zoukankan      html  css  js  c++  java
  • 周赛-Integration of Polynomial 分类: 比赛 2015-08-02 08:40 10人阅读 评论(0) 收藏

    Integration of Polynomial
    Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
    Submit Statistic Next Problem
    Problem Description

    Suppose there are a polynomial which has n nonzero terms, please print the integration polynomial of the given polynomial.
    The polynomial will be given in the following way, and you should print the result in the same way:
    k[1] e[1] k[2] e[2] … k[n] e[n]
    where k[i] and e[i] respectively represent the coefficients and exponents of nonzero terms, and satisfies e[1] < e[2] < … < e[n].
    Note:
    Suppose that the constant term of the integration polynomial is 0.
    If one coefficient of the integration polynomial is an integer, print it directly.
    If one coefficient of the integration polynomial is not an integer, please print it by using fraction a/b which satisfies that a is coprime to b.
    Input

    There are multiple cases.
    For each case, the first line contains one integer n, representing the number of nonzero terms.
    The second line contains 2*n integers, representing k[1], e[1], k[2], e[2], …, k[n], e[n]。
    1 ≤ n ≤ 1000
    -1000 ≤ k[i] ≤ 1000, k[i] != 0, 1 ≤ i ≤ n
    0 ≤ e[i] ≤ 1000, 1 ≤ i ≤ n
    Output

    Print the integration polynomial in one line with the same format as the input.
    Notice that no extra space is allowed at the end of each line.
    Sample Input

    3
    1 0 3 2 2 4
    Sample Output

    1 1 1 3 2/5 5
    Hint

    f(x) = 1 + 3x2 + 2x4
    After integrating we get: ∫f(x)dx = x + x3 + (2/5)x5
    数学的不定积分加GCD

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <list>
    #include <algorithm>
    #define LL long long
    #define RR freopen("output.txt","r",stdoin)
    #define WW freopen("input.txt","w",stdout)
    
    using namespace std;
    
    const int MAX = 100100;
    
    const int MOD = 1000000007;
    
    int k[1100],e[1100];
    
    int num[1100];
    int GCD(int a,int b)
    {
        return b==0?a:GCD(b,a%b);
    }
    int main()
    {
        int n;
        while(~scanf("%d",&n))
        {
            memset(num,0,sizeof(num));
            for(int i=0;i<n;i++)
            {
                scanf("%d %d",&k[i],&e[i]);
                e[i]++;
                if(k[i]%e[i]==0)
                {
                    k[i]/=e[i];
                }
                else
                {
                    num[i]=e[i];
                    int ans=GCD(abs(k[i]),num[i]);
                    k[i]/=ans;
                    num[i]/=ans;
                }
            }
            for(int i=0;i<n;i++)
            {
                if(i)
                {
                    printf(" ");
                }
                if(num[i])
                {
                    printf("%d/%d %d",k[i],num[i],e[i]);
                }
                else
                {
                    printf("%d %d",k[i],e[i]);
                }
            }
            printf("
    ");
        }
    
        return 0;
    }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    Vue:Vue CLI 3的学习
    npm:基础
    Spring Boot:@Value和@ConfigurationProperties
    Spring Boot:引入依赖时何时不指定版本号
    数据库事物的四大特性及隔离级别
    Python之xml文档及配置文件处理(ElementTree模块、ConfigParser模块)
    Python之数据序列化(json、pickle、shelve)
    Python之文件与目录操作(os、zipfile、tarfile、shutil)
    Python之日期与时间处理模块(date和datetime)
    Python之列表生成式、生成器、可迭代对象与迭代器
  • 原文地址:https://www.cnblogs.com/juechen/p/4721945.html
Copyright © 2011-2022 走看看