zoukankan      html  css  js  c++  java
  • 周赛-Integration of Polynomial 分类: 比赛 2015-08-02 08:40 10人阅读 评论(0) 收藏

    Integration of Polynomial
    Time Limit: 2000/1000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others)
    Submit Statistic Next Problem
    Problem Description

    Suppose there are a polynomial which has n nonzero terms, please print the integration polynomial of the given polynomial.
    The polynomial will be given in the following way, and you should print the result in the same way:
    k[1] e[1] k[2] e[2] … k[n] e[n]
    where k[i] and e[i] respectively represent the coefficients and exponents of nonzero terms, and satisfies e[1] < e[2] < … < e[n].
    Note:
    Suppose that the constant term of the integration polynomial is 0.
    If one coefficient of the integration polynomial is an integer, print it directly.
    If one coefficient of the integration polynomial is not an integer, please print it by using fraction a/b which satisfies that a is coprime to b.
    Input

    There are multiple cases.
    For each case, the first line contains one integer n, representing the number of nonzero terms.
    The second line contains 2*n integers, representing k[1], e[1], k[2], e[2], …, k[n], e[n]。
    1 ≤ n ≤ 1000
    -1000 ≤ k[i] ≤ 1000, k[i] != 0, 1 ≤ i ≤ n
    0 ≤ e[i] ≤ 1000, 1 ≤ i ≤ n
    Output

    Print the integration polynomial in one line with the same format as the input.
    Notice that no extra space is allowed at the end of each line.
    Sample Input

    3
    1 0 3 2 2 4
    Sample Output

    1 1 1 3 2/5 5
    Hint

    f(x) = 1 + 3x2 + 2x4
    After integrating we get: ∫f(x)dx = x + x3 + (2/5)x5
    数学的不定积分加GCD

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <list>
    #include <algorithm>
    #define LL long long
    #define RR freopen("output.txt","r",stdoin)
    #define WW freopen("input.txt","w",stdout)
    
    using namespace std;
    
    const int MAX = 100100;
    
    const int MOD = 1000000007;
    
    int k[1100],e[1100];
    
    int num[1100];
    int GCD(int a,int b)
    {
        return b==0?a:GCD(b,a%b);
    }
    int main()
    {
        int n;
        while(~scanf("%d",&n))
        {
            memset(num,0,sizeof(num));
            for(int i=0;i<n;i++)
            {
                scanf("%d %d",&k[i],&e[i]);
                e[i]++;
                if(k[i]%e[i]==0)
                {
                    k[i]/=e[i];
                }
                else
                {
                    num[i]=e[i];
                    int ans=GCD(abs(k[i]),num[i]);
                    k[i]/=ans;
                    num[i]/=ans;
                }
            }
            for(int i=0;i<n;i++)
            {
                if(i)
                {
                    printf(" ");
                }
                if(num[i])
                {
                    printf("%d/%d %d",k[i],num[i],e[i]);
                }
                else
                {
                    printf("%d %d",k[i],e[i]);
                }
            }
            printf("
    ");
        }
    
        return 0;
    }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    Elasticsearch 配置优化
    一个Elasticsearch嵌套nested查询的实例
    apache kafka配置中request.required.acks含义
    filebeat配置介绍
    Linux nohup命令详解
    elasticsearch中如何手动控制全文检索结果的精准度
    elasticsearch中filter执行原理深度剖析(bitset机制与caching机制)
    logback与log4j比较
    Markdown常用语法
    Asp.NetCore3.1中JWT认证入门使用(一)
  • 原文地址:https://www.cnblogs.com/juechen/p/4721945.html
Copyright © 2011-2022 走看看