zoukankan      html  css  js  c++  java
  • ConcurrentHashMap数据结构(jdk8)

    ConcurrentHashMap是1.5引入的用于高并发情况下的检索和更新。本文是基于jdk8的代码进行分析的,从put方法入手,来看下该结构是如何实现的。

    1. put方法

    1.1 流程

    1.2 一些关键方法

        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            //计算hash
            int hash = spread(key.hashCode());
            //默认就是0,代表链表的长度,如果key不碰撞都是0,
            int binCount = 0;
            //常见的自旋结构
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
                //延迟加载tab,用来放Node的数组
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                //i的位置没有值
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                    //通过cas将i位置设定为新node
                    if (casTabAt(tab, i, null,
                                 new Node<K,V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin
                }
                //正在扩容的移动阶段
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                //i位置已经有值了
                else {
                    V oldVal = null;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    //hash和key都相同才认为是相同的key,然后根据onlyIfAbsent的值来决定是否覆盖值
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    //链表尾部添加新node
                                    if ((e = e.next) == null) {
                                        pred.next = new Node<K,V>(hash, key,
                                                                  value, null);
                                        break;
                                    }
                                }
                            }
                            //红黑树结构
                            else if (f instanceof TreeBin) {
                                Node<K,V> p;
                                binCount = 2;
                                //将k,v添加到树中
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                               value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        //链表长度大于等于8,就将其转为红黑树结构
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            //计数及扩容的代码
            addCount(1L, binCount);
            return null;
        }
    
    
    
         private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; int sc;
            while ((tab = table) == null || tab.length == 0) {
                //sizeCtl 是tab扩容和初始化的控制器,默认是0,可以进行操作,负的话就代表正在初始化或扩容,因为可以多个线程扩容,-N 就代表n个线程正在扩容
                if ((sc = sizeCtl) < 0)
                    Thread.yield(); // lost initialization race; just spin
                //CAS 设置 sizectl 设为-1,失败会跳过
                else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if ((tab = table) == null || tab.length == 0) {
                            int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                            table = tab = nt;
                            //sc 为tab长度的 3/4
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        //此时sizeCtl 作为长度的3/4 ,后面作为是否需要扩容的一个判断条件
                        sizeCtl = sc;
                    }
                    break;
                }
            }
            return tab;
        }
    
    
        final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
            Node<K,V>[] nextTab; int sc;
            //ForwardingNode 是一个空的节点,没有val,是当transfer时插入到头那做标识的,所以这里代表f 正处于transfer 状态。
            if (tab != null && (f instanceof ForwardingNode) &&
                (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
                //根据tab的长度生成个印记戳
                int rs = resizeStamp(tab.length);
                while (nextTab == nextTable && table == tab &&
                       (sc = sizeCtl) < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                        //具体转移的代码,transfer的入口主要是在addCount里面,该方法是协助transfer的入口。
                        transfer(tab, nextTab);
                        break;
                    }
                }
                return nextTab;
            }
            return table;
        }
    
    
        
        private final void addCount(long x, int check) {
            CounterCell[] as; long b, s;
            if ((as = counterCells) != null ||
                //计数器增加x,s为最终长度
                !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                CounterCell a; long v; int m;
                boolean uncontended = true;
                if (as == null || (m = as.length - 1) < 0 ||
                    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                    !(uncontended =
                      U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                    fullAddCount(x, uncontended);
                    return;
                }
                if (check <= 1)
                    return;
                s = sumCount();
            }
            //需要检查是否要扩容,默认check为0 ,每次都检查
            if (check >= 0) {
                Node<K,V>[] tab, nt; int n, sc;
                //长度大于sizeCtl,前面说了是长度的是四分之三,并且小于最大容量2^30
                //n 为数组长度
                while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                       (n = tab.length) < MAXIMUM_CAPACITY) {
                    //待扩容列表长度n的校验戳
                    int rs = resizeStamp(n);
                    //正在扩容
                    if (sc < 0) {
                        // 待扩容长度n的校验戳不一致 || 长度+1了,其他线程扩容完了 || 超过最大的resizers || 扩容完成(transfer里)||扩容完成(transfer里)
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                            break;
                        //添加帮助扩容线程 
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                            //扩容
                            transfer(tab, nt);
                    }
                    //将计算出来的校验戳变为sizectl的高位,2是低位,保证了上面  sc >>> RESIZE_STAMP_SHIFT) != rs 的可以校验长度不变化
                    else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                                 (rs << RESIZE_STAMP_SHIFT) + 2))
                        transfer(tab, null);
                    s = sumCount();
                }
            }
        }
    
        //扩容方法,该方法也比较长
        private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
            int n = tab.length, stride;
            //stride 是每个线程可处理的桶的数量,后面决定了nextBound的值 
            if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                stride = MIN_TRANSFER_STRIDE; // subdivide range
            //初始化nextTab 
            if (nextTab == null) {            // initiating
                try {
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                    //扩容为2倍
                    nextTab = nt;
                //OOM
                } catch (Throwable ex) {      // try to cope with OOME
                    sizeCtl = Integer.MAX_VALUE;
                    return;
                }
                nextTable = nextTab;
                //从后向前遍历,<=0时遍历扩容完成    
                transferIndex = n;
            }
            int nextn = nextTab.length;
            //table里面某个位置的首节点,代表移动了,会被当作判断条件
            ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
            boolean advance = true;
            boolean finishing = false; // to ensure sweep before committing nextTab
              //bound 是边界
            for (int i = 0, bound = 0;;) {
                Node<K,V> f; int fh;
                //获取该线程处理的桶的边界 以及负责向前推进下标i
                //advance 是上面操作的控制器
                while (advance) {
                    int nextIndex, nextBound;
                    //  向前推进下标
                    if (--i >= bound || finishing)
                        advance = false;
                    else if ((nextIndex = transferIndex) <= 0) {
                        i = -1;
                        advance = false;
                    }
                    //当前参与扩容的线程给nextindex赋值,成功的话,bound设置为nextBound  i=transferIndex-1,跳出循环
                    else if (U.compareAndSwapInt
                             (this, TRANSFERINDEX, nextIndex,
                              nextBound = (nextIndex > stride ?
                                           nextIndex - stride : 0))) {
                        bound = nextBound;
                        i = nextIndex - 1;
                        advance = false;
                    }
                }
                // i=-1 是上面transferIndex<=0的条件,任务执行完毕
                if (i < 0 || i >= n || i + n >= nextn) {
                    int sc;
                    if (finishing) {
                        nextTable = null;
                        table = nextTab;
                        sizeCtl = (n << 1) - (n >>> 1);
                        return;
                    }
                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                        if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                            return;
                        finishing = advance = true;
                        //配合上面的>=n 重新计算table和sizeCtl
                        i = n; // recheck before commit
                    }
                }
                //占位
                else if ((f = tabAt(tab, i)) == null)
                    advance = casTabAt(tab, i, null, fwd);
                else if ((fh = f.hash) == MOVED)
                    //该位置已经处理过,重新计算i bound等,继续向前推进
                    advance = true; // already processed
                else {
                    //f是当前i位置的节点
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            Node<K,V> ln, hn;
                            //fh是f的hash值
                            //链表操作
                            if (fh >= 0) {
                                int runBit = fh & n;
                                Node<K,V> lastRun = f;
                                 //找到链表中最后一个hash 相同的节点,就是最后一个节点
                                for (Node<K,V> p = f.next; p != null; p = p.next) {
                                    int b = p.hash & n;
                                    if (b != runBit) {
                                        runBit = b;
                                        lastRun = p;
                                    }
                                }
                                //ln 猜测是low node   hn认为是 high node ,因为会拆出来两个链表
                                // hash&n ==0 一个判断标准,符合这样的,就作为ln,不符合的作为hn
                                if (runBit == 0) {
                                    ln = lastRun;
                                    hn = null;
                                }
                                else {
                                    hn = lastRun;
                                    ln = null;
                                }
                                //遍历所有节点,符合 hash & n == 0的  就放到ln的前面,不符合的就放到hn的前面
                                for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                    int ph = p.hash; K pk = p.key; V pv = p.val;
                                    if ((ph & n) == 0)
                                        ln = new Node<K,V>(ph, pk, pv, ln);
                                    else
                                        hn = new Node<K,V>(ph, pk, pv, hn);
                                }
                                //将ln 放到nexttab的i位置,high 放到i+n位置
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                //原tab 的i位置 放fwd占位
                                setTabAt(tab, i, fwd);
                                //继续往下推进
                                advance = true;
                            }
                            //红黑树操作
                            else if (f instanceof TreeBin) {
                                TreeBin<K,V> t = (TreeBin<K,V>)f;
                                TreeNode<K,V> lo = null, loTail = null;
                                TreeNode<K,V> hi = null, hiTail = null;
                                int lc = 0, hc = 0;
                                for (Node<K,V> e = t.first; e != null; e = e.next) {
                                    int h = e.hash;
                                    TreeNode<K,V> p = new TreeNode<K,V>
                                        (h, e.key, e.val, null, null);
                                    if ((h & n) == 0) {
                                        if ((p.prev = loTail) == null)
                                            lo = p;
                                        else
                                            loTail.next = p;
                                        loTail = p;
                                        ++lc;
                                    }
                                    else {
                                        if ((p.prev = hiTail) == null)
                                            hi = p;
                                        else
                                            hiTail.next = p;
                                        hiTail = p;
                                        ++hc;
                                    }
                                }
                                ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin<K,V>(lo) : t;
                                hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin<K,V>(hi) : t;
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                        }
                    }
                }
            }
        }
    
    
  • 相关阅读:
    jquery validate --转载
    领域驱动设计之领域模型--转载
    为system对象添加扩展方法
    DDD开源框架
    浅谈命令查询职责分离(CQRS)模式---转载
    AutoMapper小结
    执行后台任务的利器——Hangfire
    单元测试框架
    内存中的堆和栈
    ++*p,(*p)++,*p++与*++p四者的区别
  • 原文地址:https://www.cnblogs.com/june777/p/11597678.html
Copyright © 2011-2022 走看看