zoukankan      html  css  js  c++  java
  • 2020牛客多校第一场D

    思路:

    最后推出公式,发现只要用高斯消元求出矩阵A的逆即可

    Code:

    #pragma GCC optimize(3)
    #pragma GCC optimize(2)
    #include <map>
    #include <set>
    #include <array>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <sstream>
    #include <iostream>
    #include <stdlib.h>
    #include <algorithm>
    #include <unordered_map>
    
    using namespace std;
    
    typedef long long ll;
    typedef pair<int, int> PII;
    
    #define Time (double)clock() / CLOCKS_PER_SEC
    
    #define sd(a) scanf("%d", &a)
    #define sdd(a, b) scanf("%d%d", &a, &b)
    #define slld(a) scanf("%lld", &a)
    #define slldd(a, b) scanf("%lld%lld", &a, &b)
    
    const int N = 200 + 10;
    const ll M = 4e12;
    const int mod = 998244353;
    
    int n;
    ll a[N][N], b[N], p[N][N];
    ll ans = 0;
    
    ll qmi(ll a, ll b, ll p){
        ll res = 1;
        while(b){
            if(b & 1) res = res * a % p;
            a = a * a % p;
            b >>= 1;
        }
        return res;
    }
    
    void gauss()
    {
        int c, r;
        for (c = 0, r = 0; c < n; c ++ )
        {
            int t = r;
            for (int i = r; i < n; i ++ ) 
                if (a[i][c] > 0){
                    t = i;
                    break;
                }
    
            if (a[t][c] == 0) return;
    
            for (int i = 0; i < n; i ++) {
                swap(a[t][i], a[r][i]);
                swap(p[t][i], p[r][i]);
            }       
    
            ll k = qmi(a[r][r], mod - 2, mod);
            for(int i = 0; i < n; i ++){
                a[r][i] = k * a[r][i] % mod;
                p[r][i] = k * p[r][i] % mod;
            }
    
            for (int i = 0; i < n; i ++){  
                if(i == r) continue;     
                if (a[i][c] != 0){
                    k = a[i][c];
                    for (int j = 0; j < n; j ++){
                        a[i][j] = (a[i][j] - a[r][j] * k % mod + mod) % mod;
                        p[i][j] = (p[i][j] - p[r][j] * k % mod + mod) % mod;;
                    }
                }
            }
            r ++ ;
        }
    }
    
    int main()
    {
    #ifdef ONLINE_JUDGE
    #else
        freopen("/home/jungu/code/in.txt", "r", stdin);
        freopen("/home/jungu/code/out.txt", "w", stdout);
        // freopen("/home/jungu/code/out.txt","w",stdout);
    #endif
        // ios::sync_with_stdio(false);
        cin.tie(0), cout.tie(0);
    
        while(~sd(n)){  
            
            memset(p, 0, sizeof(p));
    
            for(int i = 0; i < n; i ++){
                p[i][i] = 1;
            }
    
            for(int i = 0; i < n; i ++){
                for(int j = 0; j < n; j ++){
                    slld(a[i][j]);
                    a[i][j] = (a[i][j] % mod + mod) % mod;
                }
            }
    
            for(int i = 0; i < n; i ++){
                slld(b[i]);
                b[i] = (b[i] % mod + mod) % mod;
            }
            
            gauss();
    
            ans = 0;
            for(int i = 0; i < n; i ++){
                for(int j = 0; j < n; j ++){
                    ans = (ans + b[j] * p[j][i] % mod * b[i] % mod) % mod;
                }
            }
            cout << ans << endl;
            
        }
    
        return 0;
    }
  • 相关阅读:
    SetROP2
    JOIN
    Delphi深度探索之PItemIDList的基本概念
    访问网络资源示例
    AVICAP 中文
    AVICAP (全)
    摄像头(简介)
    以远程计算机上的用户身份访问Com+应用
    非匿名方式访问远程的com+
    三层控件基础知识
  • 原文地址:https://www.cnblogs.com/jungu/p/13341683.html
Copyright © 2011-2022 走看看