进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。
第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。 第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。[3] 进程是操作系统中最基本、重要的概念。是多道程序系统出现后,为了刻画系统内部出现的动态情况,描述系统内部各道程序的活动规律引进的一个概念,所有多道程序设计操作系统都建立在进程的基础上。
操作系统引入进程的概念的原因
从理论角度看,是对正在运行的程序过程的抽象; 从实现角度看,是一种数据结构,目的在于清晰地刻画动态系统的内在规律,有效管理和调度进入计算机系统主存储器运行的程序。
程序是指令和数据的有序集合,其本身没有任何运行的含义,是一个静态的概念。 而进程是程序在处理机上的一次执行过程,它是一个动态的概念。 程序可以作为一种软件资料长期存在,而进程是有一定生命期的。 程序是永久的,进程是暂时的。
进程的并行与并发
并行 : 并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )
并发 : 并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。
区别:
并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器。
并发是从宏观上,在一个时间段上可以看出是同时执行的,比如一个服务器同时处理多个session。
状态介绍
在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。
(1)就绪(Ready)状态
当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。
(2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。
(3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。
同步和异步
所谓同步就是一个任务的完成需要依赖另外一个任务时,只有等待被依赖的任务完成后,依赖的任务才能算完成,这是一种可靠的任务序列
。要么成功都成功,失败都失败,两个任务的状态可以保持一致。
所谓异步是不需要等待被依赖的任务完成,只是通知被依赖的任务要完成什么工作,依赖的任务也立即执行,只要自己完成了整个任务就算完成了
。至于被依赖的任务最终是否真正完成,依赖它的任务无法确定,所以它是不可靠的任务序列
。
阻塞与非阻塞
阻塞和非阻塞这两个概念与程序(线程)等待消息通知(无所谓同步或者异步)时的状态有关。也就是说阻塞与非阻塞主要是程序(线程)等待消息通知时的状态角度来说的
进程的创建
但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。
而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程:
1. 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)
2. 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)
3. 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)
4. 一个批处理作业的初始化(只在大型机的批处理系统中应用)
进程的结束
1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)
2. 出错退出(自愿,python a.py中a.py不存在)
3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)
4. 被其他进程杀死(非自愿,如kill -9)
multiprocess模块
仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。
multiprocess.process模块
process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。
Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动) 强调: 1. 需要使用关键字的方式来指定参数 2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 参数介绍: 1 group参数未使用,值始终为None 2 target表示调用对象,即子进程要执行的任务 3 args表示调用对象的位置参数元组,args=(1,2,'egon',) 4 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18} 5 name为子进程的名称
方法介绍:
1 p.start():启动进程,并调用该子进程中的p.run() 2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法 3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁 4 p.is_alive():如果p仍然运行,返回True 5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程
属性介绍
p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置 2 p.name:进程的名称 3 p.pid:进程的pid 4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可) 5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)
在windows中使用process模块的注意事项
在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。
使用process模块创建进程
在python中启动的第一个子进程
import time from multiprocessing import Process def f(name): print('hello', name) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() time.sleep(1) print('执行主进程的内容了')
join方法
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) print('我是子进程') if __name__ == '__main__': p = Process(target=f, args=('bob',)) p.start() #p.join() print('我是父进程')
查看主进程和子进程的进程号
import os from multiprocessing import Process def f(x): print('子进程id :',os.getpid(),'父进程id :',os.getppid()) return x*x if __name__ == '__main__': print('主进程id :', os.getpid()) p_lst = [] for i in range(5): p = Process(target=f, args=(i,)) p.start()
进阶,多个进程同时运行(注意,子进程的执行顺序不是根据启动顺序决定的)
多个进程同时运行
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) if __name__ == '__main__': p_lst = [] for i in range(5): p = Process(target=f, args=('bob',)) p.start() p_lst.append(p)
多个进程同时运行,再谈join方法(1)
import time from multiprocessing import Process def f(name): print('hello', name) time.sleep(1) if __name__ == '__main__': p_lst = [] for i in range(5): p = Process(target=f, args=('bob',)) p.start() p_lst.append(p) p.join() # [p.join() for p in p_lst] print('父进程在执行')
守护进程
会随着主进程的结束而结束。
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
守护进程的启动
import os import time from multiprocessing import Process class Myprocess(Process): def __init__(self,person): super().__init__() self.person = person def run(self): print(os.getpid(),self.name) print('%s正在和女主播聊天' %self.person) p=Myprocess('哪吒') p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p.start() time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id print('主')
主进程代码执行结束守护进程立即结束
from multiprocessing import Process def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() time.sleep(0.1) print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
通过继承Process类开启进程
import os from multiprocessing import Process class MyProcess(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print(os.getpid()) print('%s 正在和女主播聊天' %self.name) p1=MyProcess('wupeiqi') p2=MyProcess('yuanhao') p3=MyProcess('nezha') p1.start() #start会自动调用run p2.start() # p2.run() p3.start() p1.join() p2.join() p3.join() print('主线程')
进程之间的数据隔离问题
from multiprocessing import Process def work(): global n n=0 print('子进程内: ',n) if __name__ == '__main__': n = 100 p=Process(target=work) p.start() print('主进程内: ',n)
进程对象的其他方法:terminate,is_alive
from multiprocessing import Process import time import random class Myprocess(Process): def __init__(self,person): self.name=person super().__init__() def run(self): print('%s正在和网红脸聊天' %self.name) time.sleep(random.randrange(1,5)) print('%s还在和网红脸聊天' %self.name) p1=Myprocess('哪吒') p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活 print(p1.is_alive()) #结果为True print('开始') print(p1.is_alive()) #结果为False
进程对象的其他属性:pid和name
1 class Myprocess(Process): 2 def __init__(self,person): 3 self.name=person # name属性是Process中的属性,标示进程的名字 4 super().__init__() # 执行父类的初始化方法会覆盖name属性 5 #self.name = person # 在这里设置就可以修改进程名字了 6 #self.person = person #如果不想覆盖进程名,就修改属性名称就可以了 7 def run(self): 8 print('%s正在和网红脸聊天' %self.name) 9 # print('%s正在和网红脸聊天' %self.person) 10 time.sleep(random.randrange(1,5)) 11 print('%s正在和网红脸聊天' %self.name) 12 # print('%s正在和网红脸聊天' %self.person) 13 14 15 p1=Myprocess('哪吒') 16 p1.start() 17 print(p1.pid) #可以查看子进程的进程id
锁 —— multiprocess.Lock
使用锁维护执行顺序
# 由并发变成了串行,牺牲了运行效率,但避免了竞争 import os import time import random from multiprocessing import Process,Lock def work(lock,n): lock.acquire() print('%s: %s is running' % (n, os.getpid())) time.sleep(random.random()) print('%s: %s is done' % (n, os.getpid())) lock.release() if __name__ == '__main__': lock=Lock() for i in range(3): p=Process(target=work,args=(lock,i)) p.start()
使用锁来保证数据安全
#文件db的内容为:{"count":5} #注意一定要用双引号,不然json无法识别 #并发运行,效率高,但竞争写同一文件,数据写入错乱 from multiprocessing import Process,Lock import time,json,random def search(): dic=json.load(open('db')) print(' 33[43m剩余票数%s 33[0m' %dic['count']) def get(): dic=json.load(open('db')) time.sleep(random.random()) #模拟读数据的网络延迟 if dic['count'] >0: dic['count']-=1 time.sleep(random.random()) #模拟写数据的网络延迟 json.dump(dic,open('db','w')) print(' 33[32m购票成功 33[0m') else: print(' 33[31m购票失败 33[0m') def task(lock): search() lock.acquire() get() lock.release() if __name__ == '__main__': lock = Lock() for i in range(100): #模拟并发100个客户端抢票 p=Process(target=task,args=(lock,)) p.start()
进程间通信
IPC(Inter-Process Communication)
队列
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
Queue([maxsize]) 创建共享的进程队列。 参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。 底层队列使用管道和锁定实现。
子进程发送数据给父进程
import time from multiprocessing import Process, Queue def f(q): q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。 if __name__ == '__main__': q = Queue() #创建一个Queue对象 p = Process(target=f, args=(q,)) #创建一个进程 p.start() print(q.get()) p.join()