题目链接 请猛戳~
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
结题思路:
当k为偶数时,s(k)=(1+A^(k/2))*(A+A^2+…+A^(k/2)) 当k为奇数时,s(k)=A+(A+A^(k/2+1))*(A+A^2+…+A^(k/2))加以递归求解
#include <iostream> #include <string.h> #include <cstdio> using namespace std; const int MAX = 32; struct Matrix{ int v[MAX][MAX]; }; Matrix E;//定义单位矩阵 E int n,k,M; Matrix add(Matrix a,Matrix b){//矩阵加法运算 Matrix c; for(int i = 1;i <= n;i++) for(int j = 1;j <= n;j++){ c.v[i][j] = (a.v[i][j] + b.v[i][j]) % M; } return c; } Matrix mul(Matrix a,Matrix b){//矩阵乘法运算 Matrix c; for(int i = 1;i <= n;i++) for(int j = 1;j <= n;j++){ c.v[i][j] = 0; for(int k = 1;k <= n;k++) c.v[i][j] = (a.v[i][k] * b.v[k][j] + c.v[i][j]) % M; } return c; } Matrix pow(Matrix a,int k){//矩阵幂运算 if(k == 0){ memset(a.v,0,sizeof(a.v)); for(int i = 1;i <= n;i++) a.v[i][i] = 1; return a; }else if(k == 1) return a; Matrix c = pow(a,k / 2); if(k & 1){ return mul(a,mul(c,c)); }else return mul(c,c); } Matrix sum(Matrix a,int k){ //连续升幂求和 if(k == 1)return a; Matrix b = pow(a,(k + 1) / 2); Matrix c = sum(a,k / 2); if(k % 2){ return add(a,mul(add(a,b),c)); }else return mul(add(E,b),c); } void initE(){ //初始化单位矩阵E memset(E.v,0,sizeof(E.v)); for(int i = 1;i <= n;i++) E.v[i][i] = 1; } void print(Matrix a){ for(int i = 1;i <= n;i++){ for(int j = 1;j <= n;j++) printf("%d ",a.v[i][j]); puts(""); } } Matrix get(){ Matrix a; for(int i = 1;i <= n;i++) for(int j = 1;j <= n;j++)scanf(" %d",&a.v[i][j]); return a; } int main() { while(~scanf("%d%d%d",&n,&k,&M)){ initE(); Matrix a = get(); Matrix b = sum(a,k); print(b); } return 0; }