题意:给定两个串,求出两个串的最长公共子序列,要求该公共子序列不包含virus串。
用dp+kmp实现
dp[i][j][k]表示以i结尾的字符串和以j结尾的字符串的公共子序列的长度(其中k表示该公共子序列的与virus的匹配程度)很显然,当k==strlen(virus)时,该公共子序列不是我们所求得
当添加一个字符时,如果失配,这时不能让k直接等于0,而是要用kmp给k一个合理的值。
1 #include <stdio.h> 2 #include <string.h> 3 const int N = 100 + 10; 4 int dp[N][N][N]; 5 int pre[N][N][N][3]; 6 char s1[N],s2[N],vir[N]; 7 int next[N]; 8 char ans[N]; 9 void makeNext(int n) 10 { 11 next[0] = -1; 12 int i = 0,j=-1; 13 while(i < n) 14 { 15 if(j==-1 || vir[i] == vir[j]) 16 { 17 i++; 18 j++; 19 next[i] = j; 20 } 21 else 22 j = next[j]; 23 } 24 } 25 void DP(int x, int y, int z, int x1, int y1, int z1, int val) 26 { 27 if(dp[x][y][z] < dp[x1][y1][z1] + val) 28 { 29 dp[x][y][z] = dp[x1][y1][z1] + val;//状态转移 30 //保存路径 31 pre[x][y][z][0] = x1; 32 pre[x][y][z][1] = y1; 33 pre[x][y][z][2] = z1; 34 } 35 } 36 int main() 37 { 38 int i,j,k; 39 scanf("%s%s%s",s1+1,s2+1,vir); 40 int len1 = strlen(s1+1); 41 int len2 = strlen(s2+1); 42 int len3 = strlen(vir); 43 memset(dp,0,sizeof(dp)); 44 memset(pre,-1,sizeof(pre)); 45 makeNext(len3); 46 for(i=1; i<=len1; ++i) 47 for(j=1; j<=len2; ++j) 48 { 49 for(k=0; k<len3; ++k) 50 { 51 DP(i,j,k,i-1,j,k,0);//s1[i] != s2[j]时的转移 52 DP(i,j,k,i,j-1,k,0); 53 if(s1[i] == s2[j])//s1[i] == s2[j] 54 { 55 if(s1[i] == vir[k]) 56 { 57 DP(i,j,k+1,i-1,j-1,k,1); 58 } 59 else 60 { 61 int p = next[k]; 62 while(p!=-1 && s1[i] != vir[p]) p = next[p]; 63 if(p==-1) 64 p = 0; 65 if(s1[i] == vir[p]) 66 DP(i,j,p+1,i-1,j-1,k,1); 67 else 68 DP(i,j,p,i-1,j-1,k,1); 69 } 70 } 71 } 72 } 73 int z; 74 int Max = -1; 75 for(k=0; k<len3; ++k) 76 if(Max < dp[len1][len2][k]) 77 { 78 Max = dp[len1][len2][k]; 79 z = k; 80 } 81 if(Max <= 0) 82 printf("0 "); 83 else//根据路径求出最长公共子序列 84 { 85 int tMax = Max; 86 int x = len1,y = len2; 87 while(pre[x][y][z][0] != -1) 88 { 89 int xx = pre[x][y][z][0]; 90 int yy = pre[x][y][z][1]; 91 int zz = pre[x][y][z][2]; 92 if(x-xx==1 && y-yy==1&&s1[x] == s2[y]) 93 ans[Max--] = s1[x]; 94 x = xx;y=yy;z=zz; 95 } 96 for(i=1; i<=tMax; ++i) 97 printf("%c",ans[i]); 98 printf(" "); 99 } 100 }