zoukankan      html  css  js  c++  java
  • tesonflow实现word2Vec

    word2Vec 是实现从原始语料中学习字词空间向量的预测模型

    使用word2Vec的skip_Gram模型

    import collections
    import math
    import os
    import random
    import zipfile
    import numpy as np
    import urllib.request
    import tensorflow as tf
    url = 'http://mattmahoney.net/dc/'
    def maybe_download(filename,expected_bytes):
        "下载数据的压缩文件并核对文件尺寸大小"
        if not os.path.exists(filename):
            filename ,_=urllib.request.urlretrieve(url+filename,filename)
        statinfo = os.stat(filename)
        if statinfo.st_size == expected_bytes:
            print('Found and verified',filename)
        else:
            print(statinfo.st_size)
            raise Exception(
                'Failed to verify'+filename +'.can you get to it with a browser?'
            )
        return filename
    filename = maybe_download('text8.zip',31344016)
    def read_data(filename):
        with zipfile.ZipFile(filename) as f:
            "将数据转化为单词列表"
            data = tf.compat.as_str(f.read(f.namelist()[0])).split( )
        return data
    
    words = read_data(filename)
    print('Data size',len(words))
    "创建词汇表"
    vocabulary_size =50000
    def build_dataset(words):
        count = [['UNK',-1]]
        "统计单词列表中单词的频数,把前50000的放入字典"
        count.extend(collections.Counter(words).most_common(vocabulary_size-1))
        dictionary = dict()
        for word,_ in count:
            dictionary[word] = len(dictionary)
        data = list()
        unk_count = 0
        """
        不在前50000里面 编码为0
        """
        for word in words:
            if word in dictionary:
                index = dictionary[word]
            else:
                index = 0
                unk_count +=1
            data.append(index)
        count[0][1] = unk_count
        reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
        return data,count,dictionary,reverse_dictionary
    data, count,dictionary,reverse_dictionary = build_dataset(words)
    del words
    print('Most common words (+UNK)',count[:5])
    print('Sample data',data[:10],[reverse_dictionary[i] for i in data[:10]])
    data_index = 0
    def generate_batch(batch_size,num_skips,skip_window):
        """
    
        :param batch_size:
        :param num_skips:  对每个单词生成多少样本 不大于2*skip_window
        :param skip_window: 滑动窗口步长
        :return: batch
                  labels
        """
        global data_index
        assert batch_size %num_skips==0
        assert num_skips <=2*skip_window
        batch = np.ndarray(shape=(batch_size),dtype=np.int32)
        labels = np.ndarray(shape=(batch_size,1),dtype=np.int32)
        span = 2*skip_window+1
        buffer = collections.deque(maxlen=span)
        for _ in range(span):
            buffer.append(data[data_index])
            data_index = (data_index+1)%len(data)
        for i in range(batch_size//num_skips):  # 一块batch里面有包含的目标单词数
            target = skip_window
            target_to_avoid = [skip_window] #需要避免的单词列表
            for j in range(num_skips):
                # 找到可以使用的语境词语
                while target in target_to_avoid:
                    target = random.randint(0,span-1)
                target_to_avoid.append(target)
                batch[i*num_skips+j]=buffer[skip_window] #目标词汇
                labels[i*num_skips+j,0] = buffer[target] #语境词汇
            "buffer此时已经填满,后续的数据会覆盖掉前面的数据"
            buffer.append(data[data_index])
            data_index=(data_index+1)%len(data)
        return batch,labels
    batch,labels = generate_batch(batch_size=8,num_skips=2,skip_window=1)
    for i in range(8):
        print(batch[i],reverse_dictionary[batch[i]],'->',labels[i,0],reverse_dictionary[labels[i,0]])
    batch_size = 128
    embedding_size = 128  #单词转化为稠密词向量的维度
    skip_window = 1
    num_skips = 2
    valid_size = 16     #验证单词数
    valid_window = 100   #验证单词数从频数最高的100个单词里面抽取
    valid_examples = np.random.choice(valid_window,valid_size,replace=False) #负样本的噪声单词数
    num_sampled =64
    graph = tf.Graph()
    with graph.as_default():
        train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
        train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
        valid_dataset = tf.constant(valid_examples,dtype = tf.int32)
        with tf.device('/cpu:0'):
            embeddings = tf.Variable(
                tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0)
            )
            embed = tf.nn.embedding_lookup(embeddings,train_inputs)  #查找输入对应的向量
            nce_weights = tf.Variable(
                tf.truncated_normal([vocabulary_size,embedding_size],
                                    stddev=1.0/math.sqrt(embedding_size))
            )
            nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
            loss = tf.reduce_mean(tf.nn.nce_loss(
                weights=nce_weights,
                biases= nce_biases,
                labels=train_labels,
                inputs=embed,
                num_sampled=num_sampled,
                num_classes=vocabulary_size
            ))
            optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
            norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims = True))
            normalized_embeddings=embeddings/norm
            valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
            similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
            init = tf.global_variables_initializer()
            num_step =100001
            with tf.Session(graph=graph)as session:
                init.run()
                print('Initialized')
                average_loss = 0
                for step in range(num_step):
                    batch_inputs,batch_labels=generate_batch(batch_size,num_skips,skip_window)
                    feed_dict={train_inputs:batch_inputs,train_labels:batch_labels}
                    _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict)
                    average_loss+=loss_val
                    if step%200==0:
                        if step >0:
                            average_loss /=2000
                    print('Average loss at step',step,":",average_loss)
                    average_loss=0
                    "把验证单词的相关单词与所有单词计算相关性,并输出前8个相似性高的单词"
                    if step%10000==0:
                        sim = similarity.eval()
                        for i in range(valid_size):
                            valid_word = reverse_dictionary[valid_examples[i]]
                            top_k = 8
                            nearest = (-sim[i,:]).argsort()[1:top_k+1]
                            log_str = "Nearest to %s:"%valid_word
                            for k in range(top_k):
                                close_word = reverse_dictionary[nearest[k]]
                                log_str= "%s %s,"%(log_str,close_word)
                            print(log_str)
                final_embeddings = normalized_embeddings.eval()
    

      使用url下载数据集会出现数据集下载不完整,推荐手动下载数据集 网址为http://mattmahoney.net/dc/text8.zip

           结果如下

           

          

  • 相关阅读:
    3B1B微分方程系列笔记(一)
    洛谷P1127 【词链】欧拉通路,欧拉回路+dfs
    龟速乘,快速乘法
    单调队列优化O(N)建BST P1377 [TJOI2011]树的序
    洛谷 p4302的dp中的细节讨论
    manacher(马拉车算法)
    博弈论(入门,持续更新)
    洛谷P1295 [TJOI2011]书架 线段树优化dp,单调栈
    洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
    洛谷 P1131 [ZJOI2007]时态同步
  • 原文地址:https://www.cnblogs.com/jzcbest1016/p/7865824.html
Copyright © 2011-2022 走看看