zoukankan      html  css  js  c++  java
  • 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行。他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始代码更加简洁易懂)。实验结果表明,这种方法在计算的斐波那契数列足够长时,可以提高性能。

    矩阵方式计算斐波那契数列的原理:

    代码:

    #include <tbb/task_scheduler_init.h>
    #include <tbb/blocked_range.h>
    #include <tbb/parallel_reduce.h>
    #include <tbb/tick_count.h>
    #include <stdio.h>
    
    using namespace std;
    using namespace tbb;
    
    //! Matrix 2x2 class
    struct Matrix2x2
    {
        //! Array of unsigned ints
        unsigned int v[2][2];
        Matrix2x2() {}
        Matrix2x2(unsigned int v00, unsigned int v01, unsigned int v10, unsigned int v11) {
            v[0][0] = v00; v[0][1] = v01; v[1][0] = v10; v[1][1] = v11;
        }
        Matrix2x2 operator * (const Matrix2x2 &to) const; //< Multiply two Matrices
    };
    //! matrix to be multiplied
    static const Matrix2x2 Matrix1110(1, 1, 1, 0);
    
    //! Identify matrix to be served as the base of the product
    static const Matrix2x2 Matrix1001(1, 0, 0, 1);
    
    //! Raw arrays matrices multiply
    void Matrix2x2Multiply(const unsigned int a[2][2], const unsigned int b[2][2], unsigned int c[2][2])
    {
        for( int i = 0; i <= 1; i++)
            for( int j = 0; j <= 1; j++)
                c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j];
    }
    
    Matrix2x2 Matrix2x2::operator *(const Matrix2x2 &to) const
    {
        Matrix2x2 result;
        Matrix2x2Multiply(v, to.v, result.v);
        return result;
    }
    
    unsigned int serialFibo(unsigned int n)
    {
        if (n < 2) {
            return n;
        }
        else
        {
            Matrix2x2 product = Matrix1110;
            for (int i = 2; i < n; i++)
            {
                product = Matrix1110*product;
            }
            return product.v[0][0];
        }
    }
    
    //! Functor for parallel_reduce
    struct parallel_reduceFibBody {
        Matrix2x2 product;
    
        //! Constructor fills product with initial matrix
        parallel_reduceFibBody() : product( Matrix1001 ) { }
        //! Splitting constructor
        parallel_reduceFibBody( parallel_reduceFibBody& other, split ) : product( Matrix1001 ){}
        //! Join point
        void join( parallel_reduceFibBody &s ) {
            product = product * s.product;
        }
        //! Process multiplications
        void operator()( const blocked_range<int> &r ) {
            for( int k = r.begin(); k < r.end(); ++k )
                product = product * Matrix1110;
        }
    };
    
    
    unsigned int parallelFibo(unsigned int n)
    {
        parallel_reduceFibBody b;
        parallel_reduce(blocked_range<int>(1, n, 3), b);
        return b.product.v[0][0];
    }
    
    int main(int argc, const char * argv[])
    {
        task_scheduler_init init;
        
        unsigned int a = 40000;
        
        // serial Fibo
        //
        tick_count start1 = tick_count::now();
        unsigned int serialResult = serialFibo(a);
        tick_count end1 = tick_count::now();
        tick_count::interval_t time1 = end1 - start1;
        printf("serial fibo(%u) = %u, calculated in %f seconds\n", a, serialResult, time1.seconds());
    
        // parallel Fibo
        //
        tick_count start2 = tick_count::now();
        unsigned int parallelResult = parallelFibo(a);
        tick_count end2 = tick_count::now();
        tick_count::interval_t time2 = end2 - start2;
        printf("parallel fibo(%u) = %u, calculated in %f seconds\n", a, parallelResult, time2.seconds());
    
        return 0;
    }

    实验结果:

    serial fibo(40000) = 160266427, calculated in 0.001070 seconds

    parallel fibo(40000) = 160266427, calculated in 0.000568 seconds

    =====================以下为老的博文==========================

    今天给公司同事做关于并行编程的内部培训,大家对是否能用并行的方法计算斐波那契数列(Fibonacci),以及使用并行的方法能否提高其性能进行了一些讨论。

    我的结论是:

    1.可以使用并行的方法计算。

    2. 至于能否提高性能,与计算斐波那契数列的实现方式有关。若采用最基础的递归方式,则对于“类似递归实现的计算斐波那契数列问题”,如果问题的计算量够大,则可能提高性能。如果用循环的方式实现斐波那契数列,则并行无论如何无法提高性能。

    下面利用苹果的并行程序库GCD(Grand Central Dispatch),写了一段代码来验证我的结论。为了仿真“大计算量的用递归实现的类斐波那契数列问题”,我在计算斐波那契数列的函数里加入了sleep 两秒的语句。实验结果显示,仅在这种方式下并行可以提高性能。

    下面是代码和实验结果:

    代码: 

    #import <Foundation/Foundation.h>
    
    unsigned int recursiveFibo(unsigned int n)
    {
        [NSThread sleepForTimeInterval:2];
        
        if (n < 2)
            return n;
        else
            return recursiveFibo(n-1) + recursiveFibo(n-2);
    }
    
    unsigned int loopFibo(unsigned int n)
    {    
        if (n < 2)
        {
            [NSThread sleepForTimeInterval:2];
            return n;
        }
        else
        {
            int fisub1 = 1;
            int fisub2 = 0;
            
            int fi = 0;
            for (unsigned int i = 2; i < n+1; i++)
            {
                [NSThread sleepForTimeInterval:2];
                fi = fisub1 + fisub2;
                fisub2 = fisub1;
                fisub1 = fi;
            }
            
            return fi;
        }
    }
    
    int main(int argc, const char* argv[])
    {
        unsigned int a = 6;
        
        NSLog(@"serial caculating Fibonacci(%u)...", a);
        double start1 = [[NSDate date] timeIntervalSince1970];
        unsigned int fibo1 = loopFibo(a);
        double end1 = [[NSDate date] timeIntervalSince1970];
        NSLog(@"fibonacci(%u) = %u, cost %f seconds", a, fibo1, end1-start1);
        
        NSLog(@"parallel calculateing Fibonacci(%u)...", a);
        double start2 = [[NSDate date] timeIntervalSince1970];
        __block unsigned int fibo2sub1 = 0;
        __block unsigned int fibo2sub2 = 0;
        dispatch_group_t group = dispatch_group_create();
        dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{fibo2sub1 = loopFibo(a-1);});
        dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{fibo2sub2 = loopFibo(a-2);});
        dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
        
        [NSThread sleepForTimeInterval:2];
        unsigned int fibo2 = fibo2sub1 + fibo2sub2;
        double end2 = [[NSDate date] timeIntervalSince1970];
        NSLog(@"fibonacci(%u) = %u, cost %f seconds", a, fibo2, end2 - start2);
        
        dispatch_release(group);
    
        return (0);
    } //main

    实验结果:

    如果用递归实现(主程序中调用recursiveFibo),

    对于“大计算量的类斐波那契数列问题”,并行可以提高性能。

    2013-07-18 17:42:04.613 recursiveFibo[34666:303] serial caculating Fibonacci(6)...

    2013-07-18 17:42:54.636 recursiveFibo[34666:303] fibonacci(6) = 8, cost 50.021813 seconds

    2013-07-18 17:42:54.637 recursiveFibo[34666:303] parallel calculateing Fibonacci(6)...

    2013-07-18 17:43:26.651 recursiveFibo[34666:303] fibonacci(6) = 8, cost 32.013492 seconds

    如果把代码中的sleep语句全部注释掉,单纯计算斐波那契数列,则并行无法提高性能:

    2013-07-18 18:04:39.885 recursiveFibo[35617:303] serial caculating Fibonacci(6)...

    2013-07-18 18:04:39.888 recursiveFibo[35617:303] fibonacci(6) = 8, cost 0.000017 seconds

    2013-07-18 18:04:39.889 recursiveFibo[35617:303] parallel calculateing Fibonacci(6)...

    2013-07-18 18:04:39.890 recursiveFibo[35617:303] fibonacci(6) = 8, cost 0.000246 seconds

     

    如果用循环实现(主程序中调用loopFibo),则无论计算量的大小,并行均不可能提高性能。

    对于“大计算量的类斐波那契数列问题”,实验结果是:

    2013-07-19 07:20:32.382 loopFibo[37029:303] serial caculating Fibonacci(6)...

    2013-07-19 07:20:34.385 loopFibo[37029:303] fibonacci(6) = 8, cost 10.004636 seconds

    2013-07-19 07:20:34.386 loopFibo[37029:303] parallel calculateing Fibonacci(6)...

    2013-07-19 07:20:38.389 loopFibo[37029:303] fibonacci(6) = 8, cost 10.005218 seconds

    对于单纯计算斐波那契数列,实验结果是:

    2013-07-19 07:31:59.530 loopFibo[37404:303] serial caculating Fibonacci(6)...

    2013-07-19 07:31:59.532 loopFibo[37404:303] fibonacci(6) = 8, cost 0.000013 seconds

    2013-07-19 07:31:59.532 loopFibo[37404:303] parallel calculateing Fibonacci(6)...

    2013-07-19 07:31:59.533 loopFibo[37404:303] fibonacci(6) = 8, cost 0.000042 seconds

    从此文也可以看出,用循环的方式实现斐波那契数列是一种更好的方式。

  • 相关阅读:
    MySQL Explain详解
    sql查询:存在A表而不在B表中的数据
    mybatis处理集合、数组参数使用in查询
    mysql日期范围查找(两个日期之间的记录)
    MYSQL查询数据表中某个字段包含某个数值
    springboot+jpa分页(Pageable+Page)
    MySQL单表能存储多少条数据?
    nosql几种热门数据库的优缺点及应用场景
    MySQL百万级数据分页查询及优化
    Redis cluster群集操作
  • 原文地址:https://www.cnblogs.com/kaige/p/parallel_fibonacci.html
Copyright © 2011-2022 走看看