zoukankan      html  css  js  c++  java
  • 计算二进制位'1'的个数

    写一个函数,返回数字中二进制位为'1'的个数。
    比如36,化为二进制得到100100,其中有2个'1'。

    方法1:分别判断各个位
    int bit_count(unsigned int n)
    {
        
    int count;
        
    for(count = 0; n; n >>= 1)
        
    {
            count 
    += n & 1;
        }

        
    return count;
    }

    方法2:循环中直接计算1的数量
    如何只数'1'的个数?如果一个数字至少包含一个'1'位,那么这个数字减1将从最低位开始依次向高位借位,直到遇到第一个不为'0'的位。依次借位使得经过的位由原来的'0'变为'1',而第一个遇到的那个'1'位则被借位变为'0'。
    36 d = 100100 b
    36-1 d = 100011 b
    如果最低位本来就是'1',那么没有发生借位。
    现在把这2个数字做按位与:n & n-1的结果是什么?
    2个数字在原先最低为'1'的位以下(包括这个位)的部分都不同,所以结果是保留了其他的'1'位。
    36 & 36-1 d = 100000 b
    这个结果刚好去掉了最低的一个'1'位
    int bit_count(unsigned int n)
    {
        
    int count;
        
    for(count = 0; n; n &= n - 1)
        
    {
            count
    ++;
        }

        
    return count;
    }
    由于直接跳过'0'位,这个方法比上面的要略微快一些。
    本来以为这个应该最快了,不过农夫三拳又给我看了一个:

    方法3:并行计算的- -这个太厉害了
    #define POW(c) (1<<(c))
    #define MASK(c) (((unsigned long)-1) / (POW(POW(c)) + 1))
    #define ROUND(n, c) (((n) & MASK(c)) + ((n) >> POW(c) & MASK(c)))

    int bit_count(unsigned int n)
    {
        n 
    = ROUND(n, 0);
        n 
    = ROUND(n, 1);
        n 
    = ROUND(n, 2);
        n 
    = ROUND(n, 3);
        n 
    = ROUND(n, 4);
        
    return n;
    }
    一下子看不明白,先把宏展开来:
    POW是计算2的幂
    MASK很奇怪,一个全1的无符号数字除以2的幂的幂加1?
    好在打印出来还能看得懂:
    MASK(0= 55555555 h = 01010101010101010101010101010101 b
    MASK(
    1= 33333333 h = 00110011001100110011001100110011
     b
    MASK(
    2= 0f0f0f0f h = 00001111000011110000111100001111
     b
    MASK(
    3= 00ff00ff h = 00000000111111110000000011111111
     b
    MASK(
    4) = 0000ffff h = 00000000000000001111111111111111 b
    这些mask分别把32位数字划分为几个部分。每个部分的前一半和后一半分别是全'0'和全'1'。
    MASK(0)分为16个部分,MASK(1)分为8个部分,...
    ROUND中对n的处理:(n & MASK) + (n >> POW & MASK)
    POW的值刚好是MASK中连续'0'(或者连续'1')的长度。也就是说ROUND把由MASK分开的n的各个部分中的高POW位和低POW位相加。
    为了便于说明,取一个简单的部分:MASK(1)的0011
    假设n的值为1001,那么ROUND后的结果就是10 + 01 = 11 b,把这个结果赋值给n,这时n的含义由原来的二进制位串变为'1'位的数量。特别的,当ROUND(n, 0)时,把n当作一个32个部分各自'1'位的数量。('0'表示没有'1',而'1'则表示有1个'1')
    计算完n = ROUND(n, 0)后,n是一个16个部分各自'1'位数量的'数组',这个'数组'的每个元素只有2个二进制位。最大值为2,足够由2个二进制位来表示。
    接下来,计算完n=ROUND(n,1)后,n是一个8个部分各自'1'位数量的'数组',这个'数组'的每个元素只有4个二进制位。最大值为4,足够由4个二进制位来表示。(实际只需要3个二进制位)
    ...
    最后一步,计算n=ROUND(n,4)后,n是一个1个部分各自'1'位数量的'数组',这个'数组'的每个元素有32个二进制位。最大值为32,足够由32个二进制位来表示。(实际只需要6个二进制位)
    这个代表32位内'1'位数量的32位二进制数也就是我们要求的结果。
    是不是说得有点罗嗦了- -

    这个方法的好处是只需要5步(log n (n=32)),并且没有循环(或分支),流水线不会被打破。
    实在太厉害,253一下...
  • 相关阅读:
    Syn Bot /OSCOVA 基础教程(2)
    Syn Bot /OSCOVA 介绍(1)
    如何访问阿里云内网数据库
    Winform项目中的Settings.settings与App.config
    WinForm项目开发傻瓜教程
    C++读取BMP文件
    boost异步tcp通信技术练习
    lex/flex 学习笔记 一
    流数据解析中高位地址转换的性能分析
    bash随笔
  • 原文地址:https://www.cnblogs.com/kaikai/p/330901.html
Copyright © 2011-2022 走看看