zoukankan      html  css  js  c++  java
  • MATLAB最大均值差异(Maximum Mean Discrepancy)

    MATLAB最大均值差异(Maximum Mean Discrepancy)

    作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

    更多内容,请看标签:MATLAB聚类

    注:X与Y数据维度必须一致!

    1. MMD介绍

    2. MATLAB程序

    数据

    注:数据集仅供参考,并不能真正用于研究中。

    源域:
    2.1789	1.7811	5.079	4.9312
    0.8621	2.1287	4.9825	2.3388
    2.6347	1.9563	4.5392	4.8442
    2.7179	2.9001	4.9027	4.8582
    2.6686	1.6799	4.3792	4.6411
    1.6736	2.3081	4.8384	3.2979
    1.5666	2.6467	5.0504	4.459
    -0.5611	2.2365	4.3925	5.1316
    5.6693	1.7355	4.5335	4.6407
    3.2032	2.103	4.1948	5.2605
    3.3525	2.8301	4.6383	5.6972
    -1.0407	3.5198	4.7106	4.9243
    3.9229	2.1161	4.5666	1.772
    2.5607	3.802	4.2681	4.6322
    3.3072	2.5083	4.6095	2.2236
    2.7121	2.4338	4.136	2.2348
    5.3547	2.1088	4.402	4.9884
    1.8302	1.4921	4.6216	3.5862
    2.8891	2.1286	4.6419	3.8606
    -0.0896	2.6894	3.6843	6.6392
    3.1404	1.9461	4.2604	5.9859
    2.3406	3.1988	5.0872	4.7518
    2.5067	2.9704	4.2749	4.3441
    8.2153	1.7592	5.2409	3.8201
    0.3027	2.7589	3.9826	4.8484
    4.0223	1.7566	4.6219	4.92
    6.1367	2.1098	4.7832	5.4567
    4.9795	2.418	4.7726	3.1959
    -1.0746	2.4311	4.7683	4.5599
    5.4939	2.6046	4.4663	5.1159
    4.5709	1.9838	4.9596	4.9317
    1.3746	2.6845	5.1921	3.2068
    1.7178	0.7976	4.6948	3.7012
    目标域:
    1.9584	2.0242	4.7594	2.587
    -2.8342	3.4594	4.4371	5.2375
    1.6251	2.7737	5.0145	6.3262
    0.7016	2.5265	4.8881	3.2105
    3.5579	2.5773	4.856	4.283
    4.3282	2.7581	4.7095	6.715
    3.1619	2.5427	4.1323	5.5883
    4.9933	2.2985	3.8455	3.8381
    3.2214	2.6478	4.3276	2.5246
    -0.2848	2.5853	4.6481	3.4857
    2.876	1.5096	3.9921	2.4505
    0.8559	2.5633	5.483	3.0589
    4.2149	2.6618	4.2017	3.3713

    MMD

    function mmd_XY=my_mmd(X, Y, sigma)
    %Author:kailugaji
    %Maximum Mean Discrepancy 最大均值差异 越小说明X与Y越相似
    %X与Y数据维度必须一致, X, Y为无标签数据,源域数据,目标域数据
    %mmd_XY=my_mmd(X, Y, 4)
    %sigma is kernel size, 高斯核的sigma
    [N_X, ~]=size(X);
    [N_Y, ~]=size(Y);
    K = rbf_dot(X,X,sigma); %N_X*N_X
    L = rbf_dot(Y,Y,sigma);  %N_Y*N_Y
    KL = rbf_dot(X,Y,sigma);  %N_X*N_Y
    c_K=1/(N_X^2);
    c_L=1/(N_Y^2);
    c_KL=2/(N_X*N_Y);
    mmd_XY=sum(sum(c_K.*K))+sum(sum(c_L.*L))-sum(sum(c_KL.*KL));
    mmd_XY=sqrt(mmd_XY);
    

    Guassian Kernel

    function H=rbf_dot(X,Y,deg)
    %Author:kailugaji
    %高斯核函数/径向基函数 K(x, y)=exp(-d^2/sigma), d=(x-y)^2, 假设X与Y维度一样
    %Deg is kernel size,高斯核的sigma
    [N_X,~]=size(X);
    [N_Y,~]=size(Y);
    G = sum((X.*X),2);
    H = sum((Y.*Y),2);
    Q = repmat(G,1,N_Y(1));
    R = repmat(H',N_X(1),1);
    H = Q + R - 2*X*Y';
    H=exp(-H/2/deg^2);  %N_X*N_Y

    结果

    >> mmd_XY=my_mmd(x, y, 4)
    
    mmd_XY =
    
        0.1230 

    3. 参考文献

    Gretton, A., K. Borgwardt, M. Rasch, B. Schoelkopf and A. Smola: A Kernel Two-Sample Test. JMLR 2012.

    Gretton, A., B. Sriperumbudur, D. Sejdinovic, H, Strathmann, S. Balakrishnan, M. Pontil, K. Fukumizu: Optimal kernel choice for large-scale two-sample tests. NIPS 2012. 

  • 相关阅读:
    七-八章学习笔记
    Linux基础学习截图
    20191221第十章读书笔记
    第九章读书笔记
    20191221读书笔记
    缓冲区溢出
    团队作业(二):需求分析
    2019-2020-1 20191319 《信息安全专业导论》第十二周学习总结
    2019-2020-1 20191319 《信息安全专业导论》第十一周学习总结
    2019-2020-1 20191319 《信息安全专业导论》第十周学习总结
  • 原文地址:https://www.cnblogs.com/kailugaji/p/11004246.html
Copyright © 2011-2022 走看看