zoukankan      html  css  js  c++  java
  • 树的最小支配集、最小点覆盖、最大独立集

    最小支配集

    定义:对于图 (G=(V,E)) ,最小支配集指的是从 (V) 中取尽量少的结点组成一个集合,使得 (V) 中剩余的点都与取出来的点有边相连。

    解法:定义 dp 各状态意义如下:

    1. (dp[u][0]):结点 (u) 属于支配集,并且 (u) 的子孙都被覆盖了的情况下支配集中包含的最少结点个数;
    2. (dp[u][1]):结点 (u) 不属于支配集,并且 (u) 的子孙都被覆盖,(u) 也被不少于 1 个子结点覆盖的情况下支配集中包含的最少结点个数;
    3. (dp[u][2]):结点 (u) 不属于支配集,并且 (u) 的子孙都被覆盖,(u) 没有被子结点覆盖的情况下支配集中包含的最少结点个数。

    状态转移方程如下:

    1. (dp[u][0]=1+sum_{vin son_u} min(dp[v][0],dp[v][1],dp[v][2])) ;

    2. (if)(u没有子结点): (dp[u][1] = INF)

      (else): (dp[u][1] = inc+sum_{vin son_u}min(dp[v][0],dp[v][1]))

      对于 (inc) 有:

      (if(exist vin son_u, dp[v][0]le dp[v][1]): inc=0)

      (else: inc=min({dp[v][0]-dp[v][1] | vin son_u})) ;

    3. (dp[u][2]=sum_{vin son_u}dp[v][1])

    代码实现:例题:nowcoder-24953 Cell Phone Network

    #include <cstdio>
    #include <algorithm>
    using std::min;
    const int maxn = 10010, INF = 0x3f3f3f3f;
    int dp[maxn][3];
    int head[maxn], to[maxn<<1], nex[maxn<<1], tot;
    void add_edge(int u, int v) {
        to[++tot] = v;
        nex[tot] = head[u];
        head[u] = tot;
    }
    void dfs(int u, int fa) {
        dp[u][0] = 1;
        dp[u][1] = dp[u][2] = 0;
        int inc = INF;
        for (int i = head[u], v; i > 0; i = nex[i]) {
            v = to[i];
            if (v == fa) continue;
            dfs(v, u);
            dp[u][0] += min(dp[v][0], min(dp[v][1], dp[v][2]));
            if (dp[v][0] <= dp[v][1]) inc = 0;
            else if (inc) inc = min(inc, dp[v][0] - dp[v][1]);
            dp[u][1] += min(dp[v][0], dp[v][1]);
            if (dp[u][2] != INF && dp[v][1] != INF) dp[u][2] += dp[v][1];
            else dp[u][2] = INF;
        }
        dp[u][1] += inc;
    }
    int main() {
        int n;
        scanf("%d", &n);
        for (int i = 0, u, v; i < n - 1; i++) {
            scanf("%d %d", &u, &v);
            add_edge(u, v);
            add_edge(v, u);
        }
        dfs(1, -1);
        printf("%d
    ", min(dp[1][0], dp[1][1]));
    
        return 0;
    }
    

    最小点覆盖

    定义:对于图 (G=(V,E)) ,最小点覆盖指的是从 (V) 中取尽量少的结点组成一个集合 (V'),使得 (E) 中所有的边 ((u,v)) 都满足 (uin V' or vin V')

    解法:定义 dp 各状态的意义如下:

    1. (dp[u][0]):表示 (u otin V') ,并且以 (u) 为根的子树中所有的边都被覆盖的情况下 (V') 中的最少结点数量;
    2. (dp[u][1]):表示 (uin V'),并且以 (u) 为根的子树中所有的边都被覆盖的情况下 (V') 中的最少结点数量。

    状态转移方程如下:

    1. (dp[u][0] = sum_{vin son_u}dp[v][1]) ;
    2. (dp[u][1]=1+sum_{vin son_u}min(dp[v][0],dp[v][1]))

    代码实现:例题 nowcoder-106060 Strategicgame

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using std::min;
    const int maxn = 1510;
    int dp[maxn][2];
    int head[maxn], to[maxn<<1], nex[maxn<<1], tot;
    void add_edge(int u, int v) {
        to[++tot] = v;
        nex[tot] = head[u];
        head[u] = tot;
    }
    void dfs(int u, int fa) {
        dp[u][0] = 0;
        dp[u][1] = 1;
        for (int i = head[u], v; i > 0; i = nex[i]) {
            v = to[i];
            if (v == fa) continue;
            dfs(v, u);
            dp[u][0] += dp[v][1];
            dp[u][1] += min(dp[v][0], dp[v][1]);
        }
    }
    
    int main() {
        int n;
        while (~scanf("%d", &n)) {
            memset(head, 0, sizeof(head));
            tot = 0;
            for (int i = 0; i < n; i++) {
                char s[15];
                scanf("%s", s);
                int u = 0, idx = -1, k = 0;
                while (s[++idx] != ':') u = u * 10 + s[idx] - '0';
                ++idx;
                while (s[++idx] != ')') k = k * 10 + s[idx] - '0';
                for (int j = 0, v; j < k; j++) {
                    scanf("%d", &v);
                    add_edge(u, v);
                    add_edge(v, u);
                }
            }
            dfs(0, -1);
            printf("%d
    ", min(dp[0][0], dp[0][1]));
        }
        return 0;
    }
    

    最大独立集

    定义:对于图 (G(V,E)) ,最大独立集指的是从 (V) 中取尽量多的结点组成一个集合,使得这些结点之间没有边相连。

    解法:像最小点覆盖一样也是定义 (u) 是否属于独立集的两个 dp 状态,太简单了不写了。

  • 相关阅读:
    Appium脚本(2):元素检测
    查看appPackage和appActivity的多种方法
    让织梦内容页arclist标签的当前文章标题加亮显示
    dedecms wap 上一篇 下一篇 链接出错
    织梦开启二级域名(多站点)内容页图片无法显示的解决方法
    多级分类标签{dede:channelartlist}实现当前栏目颜色高亮显示
    织梦channelartlist标签当前栏目高亮
    dedecms模板中 if else怎么写
    dedecms调用子栏目及文章列表
    Dedecms判断当前栏目下是否有子栏目
  • 原文地址:https://www.cnblogs.com/kangkang-/p/13493001.html
Copyright © 2011-2022 走看看