zoukankan      html  css  js  c++  java
  • 三角函数的C#语言表述

    
    
    正切 (Sec(x))= 1 / Cos(x)  
    余切 (Csc(x))= 1 / Sin(x)
    余切 (Ctan(x))= 1 / Tan(x)
    反正弦 (Asin(x))= Atan(x / Sqrt(-x * x + 1))
    反余弦 (Acos(x))= Atan(-x / Sqrt(-x * x + 1)) + 2 * Atan(1)
    反正割 (Asec(x))= 2 * Atan(1) – Atan(Sign(x) / Sqrt(x * x – 1))
    反余割 (Acsc(x))= Atan(Sign(x) / Sqrt(x * x – 1))
    反余切 (Acot(x))= 2 * Atan(1) - Atan(x)
    双曲正弦 (Sinh(x))= (Exp(x) – Exp(-x)) / 2
    双曲余弦 (Cosh(x))= (Exp(x) + Exp(-x)) / 2
    双曲正切 (Tanh(x))= (Exp(x) – Exp(-x)) / (Exp(x) + Exp(-x))
    双曲正割 (Sech(x))= 2 / (Exp(x) + Exp(-x))
    双曲余割 (Csch(x))= 2 / (Exp(x) – Exp(-x))
    双曲余切 (Coth(x))= (Exp(x) + Exp(-x)) / (Exp(x) – Exp(-x))
    反双曲正弦 (Asinh(x))= Log(x + Sqrt(x * x + 1))
    反双曲余弦 (Acosh(x))= Log(x + Sqrt(x * x – 1))
    反双曲正切 (Atanh(x))= Log((1 + x) / (1 – x)) / 2
    反双曲正割 (AsecH(x))= Log((Sqrt(-x * x + 1) + 1) / x)
    反双曲余割 (Acsch(x))= Log((Sign(x) * Sqrt(x * x + 1) + 1) / x)
    反双曲余切 (Acoth(x))= Log((x + 1) / (x – 1)) / 2
  • 相关阅读:
    PHP中get请求中参数的key不能是para
    js对数组中的数字排序
    js 数组不重复添加元素
    Controllers
    Views
    Models
    Requirements
    Pull Requests
    Upgrade Guide
    Overview & Change Log
  • 原文地址:https://www.cnblogs.com/karl-wu/p/4369396.html
Copyright © 2011-2022 走看看