zoukankan      html  css  js  c++  java
  • Round Numbers

    转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1301472836

    大致题意:

    输入两个十进制正整数ab,求闭区间 [a ,b] 内有多少个Round number

    所谓的Round Number就是把一个十进制数转换为一个无符号二进制数,若该二进制数中0的个数大于等于1的个数,则它就是一个Round Number

    注意,转换所得的二进制数,最高位必然是1,最高位的前面不允许有0

    规定输入范围: 1<= a <b<=2E

    用组合做

     

    很猥琐的题,我首先说说猥琐的地方,再说说解题思路,有四点很猥琐:

    1)规定输入范围: 1<= a <b<=2E

    这是一个忽悠人的幌子!!!输入数是大于2E!!!但却又不是大数!!

    网上看很多同学都说要用到精度,其实完全没必要,int能表示21E+的整数,精确的int极限能表示的正整数为2147483647,区区2E小意思.

    但是即使这样,面对这题也不能松懈啊! 2E转化为二进制有28位,一般同学都是用一维数组bin[]去存储二进制数的,这个数组的边界你要是定在282930之类的就以为save那就大错特错了!!经过我孜孜不倦的提交,bin[]边界的最小值为35 !!说明了用于测试的数据库是存在超过2E的数的!很多同学就因为这点不断WA(越界问题竟然不是RE,太卑鄙了),但又找不到任何算法错误,郁闷几天。

    2bin[]数组若果定义为局部数组,等着WA吧!

         我找不到任何原因为什么会这样,bin不管是全局定义 还是 局部定义,本地是完全AC的,上传就出问题了,局部WA,全局AC

         人家有强权,我被迫把传参del掉,把bin改为全局,郁闷!猥琐!

    3)组合数打表,同(1)的猥琐,c[][]边界的最小值为33,就是说如果定义组合表的大小比

    c[33][33]小的,就等着RE!  我一开始很小白的定义了c[29][29]。。。。呼吁大家别为别人的服务器省空间了= =

    还有就是这个算法有一个违背常识的处理,要把c[0][0]=1,不然某些最终结果会少1

    4)输入不能用循环输入while(cin>>…),不然你就等着OLE (就是Output Limit Excessed,很少见吧!)。不知道数据库是怎么回事,输入竟然不会根据读取数据结束而结束,而是无限输出最后一次输入所得的结果……老老实实一次输出就end file吧!

     

    解题思路:

    组合数学题,不知道为什么会被归类到递推数学,可能是因为杨辉三角和组合数之间的关系。。。

    我根据我写的程序讲解好了

     

    要知道闭区间 [a ,b] 内有多少个Round number,只需要分别求出

    闭区间 [0 ,a] 内有TRN

    闭区间 [0 ,b+1] 内有SRN

    再用 S – T 就是闭区间 [a ,b] 内的RN数了

    至于为什么是 b+1,因为对于闭区间 [0 ,k] ,我下面要说的算法求出的是比k小的RN数,就是说不管 k是不是RN, 都没有被计算在内,所以若要把闭区间[a ,b]的边界ab都计算在内,就要用上述的处理方法。

     

    现在问题的关键就是如何求[0 ,k]内的RN数了

    首先要把k转化为二进制数bin-k,并记录其位数(长度)len

    那么首先计算长度小于lenRN数有多少(由于这些数长度小于len,那么他们的值一定小于k,因此在进行组合时就无需考虑组合所得的数与k之间的大小了)

    for(i=1;i<bin[0]-1;i++)         //bin[0]记录的是二进制数的长度len

                  for(j=i/2+1;j<=i;j++)

                         sum+=c[i][j];

    可以看到,i<len-1 ,之所以减1,是因为这些长度比len小的数,最高位一定是1,那么剩下可供放入数字的位数就要再减少一个了

    这条程序得到的sum


    图片

    1表示当前处理的二进制数的最高位,X表示该二进制数待放入数字的位

    显然这段程序把  二进制数0  排除在外了,这个是最终结果没有影响的,因为最后要把区间[a , b]首尾相减,0存不存在都一样了。

     

     

    然后计算长度等于lenRN数有多少(由于这些数长度等于len,那么他们的值可能小于k,可能大于k,因此在进行组合时就要考虑组合所得的数与k之间的大小了)

    int zero=0;  //从高位向低位搜索过程中出现0的位的个数

           for(i=bin[0]-1;i>=1;i--)

                  if(bin[i])   //当前位为1

                         for(j=(bin[0]+1)/2-(zero+1);j<=i-1;j++)

                                sum+=c[i-1][j];

                  else

                         zero++;

    之所以初始化i=bin[0]-1,是因为bin[]是逆向存放k的二进制的,因此要从高位向低位搜索,就要从bin[]后面开始,而要 bin[0]-1 是因为默认以后组合的数长度为len,且最高位为1,因此最高位不再搜索了。

    那么问题的关键就是怎样使得以后组合的数小于k

    这个很简单:

    从高位到低位搜索过程中,遇到当前位为0,则不处理,但要用计数器zero累计当前0出现的次数

    遇到当前位为1,则先把它看做为0zero+1,那么此时当前位 后面的 所有低位任意组合都会比k小,找出这些组合中RN的个数,统计完毕后把当前位恢复为原来的1,然后zero-1,继续向低位搜索

     

     

    那么问题就剩下 当当前位为1时,把它看做0之后,怎样去组合后面的数了

    此时组合要考虑2个方面:

    (1)       当前位置i后面允许组合的低位有多少个,我的程序由于bin是从bin[1]开始存储二进制数的,因此 当前位置i后面允许组合的低位有i-1

    (2)       组合前必须要除去前面已出现的0的个数zero

    我的程序中初始化j=(bin[0]+1)/2-(zero+1) j本来初始化为(bin[0]+1)/2就可以了,表示对于长度为bin[0]的二进制数,当其长度为偶数时,至少其长度一半的位数为0,它才是RN,当其长度为奇数时,至少其长度一半+1的位数为0,它才是RN

    但是现在还必须考虑前面出现了多少个0,根据前面出现的0的个数,j的至少取值会相应地减少。  -(zero+1) ,之所以+1,是因为要把当前位bin[i]看做0

     

     

     

    然后到了最后,剩下一个问题就是怎样得到每一个 的值,这个我发现很多同学都是利用打表做的,利用的就是 组合数  杨辉三角 的关系(建立一个二维数组C[n]

    就能看到他们之间关系密切啊!区别就是顶点的值,杨辉三角为1,组合数为0

    其实这个“关系”是有数学公式的
    图片

    好好体会一下吧!

    其实组合数也可以直接用计算方法做(n的规模可以至少扩展到1000),不过这里n的规模只有26,打表应该是更快的,有兴趣学习用计算方法做组合数的同学可以联系我,这个要用另外的数学方法处理。

    QQ289065406    O(_)O哈哈~

    #include<map>
    #include<set>
    #include<list>
    #include<cmath>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<cstdlib>
    #include<cstring>
    #include<iomanip>
    #include<numeric>
    #include<sstream>
    #include<utility>
    #include<iostream>
    #include<algorithm>
    #include<functional>
    
    using namespace std ;
    int c[ 40 ][ 40 ] = { 0 } ;
    int bin[ 40 ] ;//十进制n的二进制数
    /*打表,计算C( M , N )*/
    void play_table()
    {
    	for( int i = 0 ; i <= 32 ; ++i )
    	{
    		for( int j = 0 ; j <= i ; ++j )
    		{
    			if( !j || i == j )
    				c[ i ][ j ] = 1 ;
    			else
    				c[ i ][ j ] = c[ i - 1 ][ j - 1 ] + c[ i - 1 ][ j ] ;
    		}
    	}
    } 
    /*十进制n转换二进制,逆序存放到bin[]*/
    void dec_to_bin( int n )
    {
    	bin[ 0 ] = 0 ;//b[0]是二进制数的长度
    	while( n )
    	{
    		bin[ ++bin[ 0 ] ] = n % 2 ;
    		n /= 2 ;
    	}
    }
    
    /*计算比十进制数n小的所有RN数*/
    int round( int n )
    {
    	int i , j ;
    	int sum = 0 ;//比十进制数n小的所有RN数
    	dec_to_bin( n ) ;
    	/*计算长度小于bin[0]的所有二进制数中RN的个数*/
    	for( i = 1 ; i < bin[ 0 ] - 1 ; ++i )
    	{
    		for( j = i / 2 + 1 ; j <= i ; ++j )
    		{
    			sum += c[ i ][ j ] ;
    		}
    	}
    	 /*计算长度等于bin[0]的所有二进制数中RN的个数*/
    	int zero = 0 ; //从高位向低位搜索过程中出现0的位的个数
    	for( i = bin[ 0 ] - 1 ; i >= 1 ; --i )
    	{
    		if( bin[ i ] )   //当前位为1
    		{
    			for( j = ( bin[ 0 ] + 1 ) / 2 - ( zero + 1 ) ; j <= i - 1 ; ++j )
    				sum += c[ i - 1 ][ j ] ;
    		}
    		else
    			zero++ ;
    	}
    	return sum ; 
    }
    
    int main()
    {
    	play_table() ;
    	int a , b ;
    	cin >> a >> b ;
    	cout << round( b + 1 ) - round( a ) << endl ;
        return 0;
    }
    


  • 相关阅读:
    python爬虫
    RMQ算法
    组合数
    水池数目
    jQuery 拼接事件
    ORACLE
    day 75
    day74 vue框架
    day73 vue框架
    day 72 vue框架
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3301856.html
Copyright © 2011-2022 走看看