题意:
给定一个火柴棒拼成的方格阵,然后去掉一些火柴棒,问至少再去掉几根火柴棒能够让图中一个正方形都没有。
思路:
1. 由于题目中给定了 n 的范围,2 * n * (n + 1) <= 60 -> 所以能够保证所有的火柴用 __int64 的位运算表示;
2. 问题的关键在于如何生成火柴构成的方阵,以及生成方阵之后如何去搜索;
3. 启发式函数 h 的计算需要考量:如果删除了某个方阵的一个边,则能够保证 h(s1) <= h(s2) + C(s1, s2),其中 C(s1, s2) = 1,h(s1) - h(s2) <= 1,可以用反证法证明;
4. 各种位运算的范围要明确,如 1<<i 前面要加上 __int64 修饰方能得到正确的结果,这和 C 语言默认长度是 32 有关;
#include <iostream>
#include <algorithm>
using namespace std;
const int INFS = 0x7fffffff;
int N, C, E, bound;
__int64 square[100], base[6][6];
bool succ;
inline __int64 getflag(int i) {
return ((__int64)1 << (i - 1));
}
inline int geth(int i, int j) {
return (2 * N + 1) * (i - 1) + j;
}
inline int getv(int i, int j) {
return (2 * N + 1) * (i - 1) + j + N;
}
void build(void) {
C = 0;
memset(base, 0, sizeof(base));
for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {
base[i][j] |= getflag(geth(i, j)) | getflag(geth(i + 1, j));
base[i][j] |= getflag(getv(i, j)) | getflag(getv(i, j + 1));
square[C++] = base[i][j];
}
}
for (int size = 2; size <= N; size++) {
for (int i = 1; i + size - 1 <= N; i++) {
for (int j = 1; j + size - 1 <= N; j++) {
square[C] = 0;
for (int a = 0; a < size; a++) {
for (int b = 0; b < size; b++)
square[C] ^= base[i+a][j+b];
}
C += 1;
}
}
}
}
int dfs(__int64 state, int depth) {
int h = 0;
__int64 u = 0, s = state;
for (int i = 0; i < C; i++) {
if ((s & square[i]) == square[i]) {
h += 1;
s ^= square[i];
if (u == 0)
u = square[i];
}
}
if (h == 0) {
succ = true;
return depth;
}
if (depth + h > bound) {
return depth + h;
}
int newbound = INFS;
for (int i = 1; i <= E; i++) {
if (u & getflag(i)) {
int b = dfs(state ^ getflag(i), depth + 1);
if (succ)
return b;
newbound = min(b, newbound);
}
}
return newbound;
}
int main() {
int cases;
scanf("%d", &cases);
while (cases--) {
scanf("%d", &N);
build();
E = 2 * N * (N + 1);
int k;
__int64 state = ((__int64)1 << E) - 1;
scanf("%d", &k);
for (int i = 0; i < k; i++) {
int x;
scanf("%d", &x);
state ^= getflag(x);
}
succ = false;
bound = 0;
while (!succ)
bound = dfs(state, 0);
printf("%d\n", bound);
}
return 0;
}