zoukankan      html  css  js  c++  java
  • Intro to Python for Data Science Learning 8

    NumPy: Basic Statistics

    from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=13

    • Average versus median

    You now know how to use numpy functions to get a better feeling for your data. It basically comes down to importingnumpy and then calling several simple functions on the numpyarrays:

    import numpy as np
    x = [1, 4, 8, 10, 12]
    np.mean(x)
    np.median(x)

    # np_baseball is available

    # Import numpy
    import numpy as np

    # Create np_height from np_baseball
    np_height = np.array(np_baseball)[:,0]

    # Print out the mean of np_height
    print(np.mean(np_height))

    # Print out the median of np_height
    print(np.median(np_height))

    • Explore the baseball data

    # np_baseball is available

    # Import numpy
    import numpy as np

    # Print mean height (first column)
    avg = np.mean(np_baseball[:,0])
    print("Average: " + str(avg))

    # Print median height. Replace 'None'
    med = np.median(np_baseball[:,0])
    print("Median: " + str(med))

    # Print out the standard deviation on height. Replace 'None'
    stddev = np.std(np_baseball[:,0])
    print("Standard Deviation: " + str(stddev))

    # Print out correlation between first and second column. Replace 'None'
    corr = np.corrcoef(np_baseball[:,0],np_baseball[:,1])
    print("Correlation: " + str(corr))

    • Blend it all together

    You've contacted FIFA for some data and they handed you two lists. The lists are the following:

    positions = ['GK', 'M', 'A', 'D', ...]
    heights = [191, 184, 185, 180, ...]

    Each element in the lists corresponds to a player. The first list,positions, contains strings representing each player's position. The possible positions are: 'GK' (goalkeeper), 'M' (midfield),'A' (attack) and 'D' (defense). The second list, heights, contains integers representing the height of the player in cm. The first player in the lists is a goalkeeper and is pretty tall (191 cm).

    You're fairly confident that the median height of goalkeepers is higher than that of other players on the soccer field. Some of your friends don't believe you, so you are determined to show them using the data you received from FIFA and your newly acquired Python skills.

    # heights and positions are available as lists

    # Import numpy
    import numpy as np

    # Convert positions and heights to numpy arrays: np_positions, np_heights
    np_positions = np.array(positions)
    np_heights = np.array(heights)

    # Heights of the goalkeepers: gk_heights
    gk_heights = np_heights[np_positions == "GK"]

    # Heights of the other players: other_heights
    other_heights = np_heights[np_positions != "GK"]


    # Print out the median height of goalkeepers. Replace 'None'
    print("Median height of goalkeepers: " + str(np.median(gk_heights)))

    # Print out the median height of other players. Replace 'None'
    print("Median height of other players: " + str(np.median(other_heights)))

  • 相关阅读:
    VSPackge插件系列:常用IDE功能的封装
    C#如何加载程序运行目录外的程序集
    MSBuild编译扩展
    VSPackge插件系列:如何正确获取DTE
    VSPackge插件系列:简单文本编辑器的实现
    一步步实现自己的框架系列(四):页面与页面服务的创建
    DW 图片不显示的情况 ———网页只显示字不显示图片的情况 目录下的图片名被改动不显示图片的情况
    数据库--增、删、改、查(笛卡尔积)
    C#结构体
    C# 3循环 for语句
  • 原文地址:https://www.cnblogs.com/keepSmile/p/7794204.html
Copyright © 2011-2022 走看看