zoukankan      html  css  js  c++  java
  • Python for Data Science

    Chapter 4 - Clustering Models

    Segment 1 - K-means method

    Clustering and Classification Algorithms

    K-Means clustering: unsupervised clustering algorithm where you know how many clusters are appropriate

    K-Means Use Cases

    • Market Price and Cost Modeling
    • Insurance Claim Fraud Detection
    • Hedge Fund Classification
    • Customer Segmentation

    K-Means Clustering

    Predictions are based on the number of centroids present(K) and nearest mean values, given an Euclidean distance measurement between observations.

    When using K-means:

    • Scale your variables
    • Look at a scatterplot or the data table to estimate the appropriate number of centroids to use for the K parameter value

    Setting up for clustering analysis

    import numpy as np
    import pandas as pd
    
    import matplotlib.pyplot as plt
    
    import sklearn
    from sklearn.preprocessing import scale
    import sklearn.metrics as sm
    from sklearn.metrics import confusion_matrix, classification_report
    
    from sklearn.cluster import KMeans
    from mpl_toolkits.mplot3d import Axes3D
    from sklearn import datasets
    
    %matplotlib inline
    plt.figure(figsize=(7,4))
    
    <Figure size 504x288 with 0 Axes>
    
    
    
    
    <Figure size 504x288 with 0 Axes>
    
    iris = datasets.load_iris()
    
    X = scale(iris.data)
    y = pd.DataFrame(iris.target)
    varibale_names = iris.feature_names
    X[0:10]
    
    array([[-0.90068117,  1.01900435, -1.34022653, -1.3154443 ],
           [-1.14301691, -0.13197948, -1.34022653, -1.3154443 ],
           [-1.38535265,  0.32841405, -1.39706395, -1.3154443 ],
           [-1.50652052,  0.09821729, -1.2833891 , -1.3154443 ],
           [-1.02184904,  1.24920112, -1.34022653, -1.3154443 ],
           [-0.53717756,  1.93979142, -1.16971425, -1.05217993],
           [-1.50652052,  0.78880759, -1.34022653, -1.18381211],
           [-1.02184904,  0.78880759, -1.2833891 , -1.3154443 ],
           [-1.74885626, -0.36217625, -1.34022653, -1.3154443 ],
           [-1.14301691,  0.09821729, -1.2833891 , -1.44707648]])
    

    Building and running your model

    clustering = KMeans(n_clusters=3, random_state=5)
    
    clustering.fit(X)
    
    KMeans(n_clusters=3, random_state=5)
    

    Plotting your model outputs

    iris_df = pd.DataFrame(iris.data)
    iris_df.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
    y.columns = ['Targets']
    
    color_theme = np.array(['darkgray','lightsalmon','powderblue'])
    
    plt.subplot(1,2,1)
    
    plt.scatter(x=iris_df.Petal_Length, y=iris_df.Petal_Width, c=color_theme[iris.target],s=50)
    plt.title('Ground Truth Classfication')
    
    plt.subplot(1,2,2)
    
    plt.scatter(x=iris_df.Petal_Length, y=iris_df.Petal_Width, c=color_theme[clustering.labels_],s=50)
    plt.title('K-Means Classfication')
    
    Text(0.5, 1.0, 'K-Means Classfication')
    

    ML04output_9_1

    relabel = np.choose(clustering.labels_, [2, 0, 1]).astype(np.int64)
    
    plt.subplot(1,2,1)
    
    plt.scatter(x=iris_df.Petal_Length, y=iris_df.Petal_Width, c=color_theme[iris.target],s=50)
    plt.title('Ground Truth Classfication')
    
    plt.subplot(1,2,2)
    
    plt.scatter(x=iris_df.Petal_Length, y=iris_df.Petal_Width, c=color_theme[relabel],s=50)
    plt.title('K-Means Classfication')
    
    Text(0.5, 1.0, 'K-Means Classfication')
    

    ML04output_10_1

    Evaluate your clustering results

    print(classification_report(y, relabel))
    
                  precision    recall  f1-score   support
    
               0       1.00      1.00      1.00        50
               1       0.74      0.78      0.76        50
               2       0.77      0.72      0.74        50
    
        accuracy                           0.83       150
       macro avg       0.83      0.83      0.83       150
    weighted avg       0.83      0.83      0.83       150
  • 相关阅读:
    P24—动态数组没有{}
    JavaB站学习————接口在开发中的作用
    JavaB站学习————extends和implements同时出现
    JavaB站学习————一个类可以实现多个接口以及接口的总结
    JavaB站学习————接口和多态联合使用。
    01日语五十音
    07 递归&&命名风格&&作业(结构体,malloc,函数,递归)
    JavaB站学习——作业16
    电子书
    破解压缩包
  • 原文地址:https://www.cnblogs.com/keepmoving1113/p/14319079.html
Copyright © 2011-2022 走看看