Windows系统下YOLO动态链接库的封装和调用
Windows10+VS2015+OpenCV3.4.1+CUDA8.0+cuDNN8.0
参考教程 https://blog.csdn.net/stjuliet/article/details/87884976
承接上一篇文章所做工作,这篇文章进一步讲述如何将YOLO封装成动态链接库以方便后续目标检测时直接调用。
关于动态链接库的介绍:
https://www.cnblogs.com/chechen/p/8676226.html
https://www.jianshu.com/p/458f87251b3d?tdsourcetag=s_pctim_aiomsg
step1 运行环境和前期准备
与上一篇文章所需环境完全一致,具体可参考:
https://blog.csdn.net/stjuliet/article/details/87731998
配置opecv3.4.1 cuda8.0以及配套cudnn
step2 编译动态链接库
1、下载Darknet源代码:
https://github.com/AlexeyAB/darknet
2、
(1)下载解压后,进入darknet-master->build->darknet目录:
(2)打开yolo_cpp_dll.vcxproj文件,将具有CUDA的版本改成自己使用的版本(默认为10.0),一共有两处,分别在55行和302行
自己电脑装了cuda10和8,这里用8
(3)打开yolo_cpp_dll.sln文件,在属性管理器中配置包含目录、库目录、附加依赖项(和OpenCV环境配置一样),特别注意要将CUDA设备中的Generation改成自己显卡对应的计算能力(默认添加了35和75两项,可能不是你的显卡的计算能力,可以去英伟达显卡官网查询计算能力:https://developer.nvidia.com/cuda-gpus#collapseOne)
,否则接下来的生成会出错。
(4)分别设置Debug/Release - x64,右键项目->生成,成功后在darknet-masteruilddarknetx64目录下找到生成的yolo_cpp_dll.lib和yolo_cpp_dll.dll两个文件。
step3 调用动态链接库
一、至此所有准备工作已经完成,首先将调用所需的所有文件找出来:
1、动态链接库(均在darknet-masteruilddarknetx64目录下)
(1)yolo_cpp_dll.lib
(2)yolo_cpp_dll.dll
(3)pthreadGC2.dll
(4)pthreadVC2.dll
2、OpenCV库(取决于使用debug还是release模式)
(1)opencv_world340d.dll
(2)opencv_world340.dll
如果是扩展库需要
opencv_aruco341.lib opencv_bgsegm341.lib opencv_bioinspired341.lib opencv_calib3d341.lib opencv_ccalib341.lib opencv_core341.lib opencv_cudaarithm341.lib opencv_cudabgsegm341.lib opencv_cudacodec341.lib opencv_cudafeatures2d341.lib opencv_cudafilters341.lib opencv_cudaimgproc341.lib opencv_cudalegacy341.lib opencv_cudaobjdetect341.lib opencv_cudaoptflow341.lib opencv_cudastereo341.lib opencv_cudawarping341.lib opencv_cudev341.lib opencv_datasets341.lib opencv_dnn341.lib opencv_dnn_objdetect341.lib opencv_dpm341.lib opencv_face341.lib opencv_features2d341.lib opencv_flann341.lib opencv_fuzzy341.lib opencv_hfs341.lib opencv_highgui341.lib opencv_imgcodecs341.lib opencv_imgproc341.lib opencv_img_hash341.lib opencv_line_descriptor341.lib opencv_ml341.lib opencv_objdetect341.lib opencv_optflow341.lib opencv_phase_unwrapping341.lib opencv_photo341.lib opencv_plot341.lib opencv_reg341.lib opencv_rgbd341.lib opencv_saliency341.lib opencv_shape341.lib opencv_stereo341.lib opencv_stitching341.lib opencv_structured_light341.lib opencv_superres341.lib opencv_surface_matching341.lib opencv_text341.lib opencv_tracking341.lib opencv_video341.lib opencv_videoio341.lib opencv_videostab341.lib opencv_xfeatures2d341.lib opencv_ximgproc341.lib opencv_xobjdetect341.lib opencv_xphoto341.lib
3、YOLO模型文件(第一个文件在darknet-masteruilddarknetx64data目录下,第二个文件在darknet-masteruilddarknetx64目录下,第三个文件需要自己下载,下载链接见前一篇文章)
(1)coco.names
(2)yolov3.cfg
(3)yolov3.weights
4、头文件
(1)yolo_v2_class.hpp
头文件包含了动态链接库中具体的类的定义,调用时需要引用,这个文件在darknet-masteruilddarknet目录下的yolo_console_dll.sln中,将其复制到记事本保存成.hpp文件即可。
二、在VS2015中新建一个空项目,在源文件中添加main.cpp,将第一步中所有文件全部放入与main.cpp同路径的文件夹中,并且放入一个目标检测的测试视频test0.mp4,在main.cpp中添加如下代码:
#include <iostream> #ifdef _WIN32 #define OPENCV #define GPU #endif #include "yolo_v2_class.hpp" //引用动态链接库中的头文件 #include <opencv2/opencv.hpp> #include "opencv2/highgui/highgui.hpp" //#pragma comment(lib, "opencv_world340d.lib") //引入OpenCV链接库 #pragma comment(lib, "yolo_cpp_dll.lib") //引入YOLO动态链接库 //以下两段代码来自yolo_console_dll.sln void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names, int current_det_fps = -1, int current_cap_fps = -1) { int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; for (auto &i : result_vec) { cv::Scalar color = obj_id_to_color(i.obj_id); cv::rectangle(mat_img, cv::Rect(i.x, i.y, i.w, i.h), color, 2); if (obj_names.size() > i.obj_id) { std::string obj_name = obj_names[i.obj_id]; if (i.track_id > 0) obj_name += " - " + std::to_string(i.track_id); cv::Size const text_size = getTextSize(obj_name, cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, 2, 0); int const max_width = (text_size.width > i.w + 2) ? text_size.width : (i.w + 2); cv::rectangle(mat_img, cv::Point2f(std::max((int)i.x - 1, 0), std::max((int)i.y - 30, 0)), cv::Point2f(std::min((int)i.x + max_width, mat_img.cols - 1), std::min((int)i.y, mat_img.rows - 1)), color, CV_FILLED, 8, 0); putText(mat_img, obj_name, cv::Point2f(i.x, i.y - 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(0, 0, 0), 2); } } if (current_det_fps >= 0 && current_cap_fps >= 0) { std::string fps_str = "FPS detection: " + std::to_string(current_det_fps) + " FPS capture: " + std::to_string(current_cap_fps); putText(mat_img, fps_str, cv::Point2f(10, 20), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(50, 255, 0), 2); } } std::vector<std::string> objects_names_from_file(std::string const filename) { std::ifstream file(filename); std::vector<std::string> file_lines; if (!file.is_open()) return file_lines; for (std::string line; getline(file, line);) file_lines.push_back(line); std::cout << "object names loaded "; return file_lines; } int main() { std::string names_file = "../../yolo权重/coco.names"; std::string cfg_file = "../../yolo权重/yolov3.cfg"; std::string weights_file = "../../yolo权重/yolov3.weights"; Detector detector(cfg_file, weights_file, 0); //初始化检测器 //std::vector<std::string> obj_names = objects_names_from_file(names_file); //调用获得分类对象名称 //或者使用以下四行代码也可实现读入分类对象文件 std::vector<std::string> obj_names; std::ifstream ifs(names_file.c_str()); std::string line; while (getline(ifs, line)) obj_names.push_back(line); //测试是否成功读入分类对象文件 for (size_t i = 0; i < obj_names.size(); i++) { std::cout << obj_names[i] << std::endl; } cv::VideoCapture capture; capture.open("DJI_0002.MP4"); if (!capture.isOpened()) { printf("文件打开失败"); } cv::Mat frame; while (true) { capture >> frame; std::vector<bbox_t> result_vec = detector.detect(frame); draw_boxes(frame, result_vec, obj_names); cv::namedWindow("test", CV_WINDOW_NORMAL); cv::imshow("test", frame); cv::waitKey(3); } return 0; }
工程配置
包含目录
opencv
cuda
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0include F:dongdong tool avidia_cuda_opencvopencv3.4.1include F:dongdong tool avidia_cuda_opencvopencv3.4.1includeopencv2 F:dongdong tool avidia_cuda_opencvopencv3.4.1includeopencv
库目录
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0libx64 F:dongdong tool avidia_cuda_opencvopencv3.4.1x64vc14lib
输入附加依赖项
增加 cuda
cublas.lib cuda.lib cudadevrt.lib cudart.lib cudart_static.lib nvcuvid.lib OpenCL.lib cudnn.lib
增加yolo
yolo_cpp_dll.lib
增加opencv
opencv_aruco341.lib opencv_bgsegm341.lib opencv_bioinspired341.lib opencv_calib3d341.lib opencv_ccalib341.lib opencv_core341.lib opencv_cudaarithm341.lib opencv_cudabgsegm341.lib opencv_cudacodec341.lib opencv_cudafeatures2d341.lib opencv_cudafilters341.lib opencv_cudaimgproc341.lib opencv_cudalegacy341.lib opencv_cudaobjdetect341.lib opencv_cudaoptflow341.lib opencv_cudastereo341.lib opencv_cudawarping341.lib opencv_cudev341.lib opencv_datasets341.lib opencv_dnn341.lib opencv_dnn_objdetect341.lib opencv_dpm341.lib opencv_face341.lib opencv_features2d341.lib opencv_flann341.lib opencv_fuzzy341.lib opencv_hfs341.lib opencv_highgui341.lib opencv_imgcodecs341.lib opencv_imgproc341.lib opencv_img_hash341.lib opencv_line_descriptor341.lib opencv_ml341.lib opencv_objdetect341.lib opencv_optflow341.lib opencv_phase_unwrapping341.lib opencv_photo341.lib opencv_plot341.lib opencv_reg341.lib opencv_rgbd341.lib opencv_saliency341.lib opencv_shape341.lib opencv_stereo341.lib opencv_stitching341.lib opencv_structured_light341.lib opencv_superres341.lib opencv_surface_matching341.lib opencv_text341.lib opencv_tracking341.lib opencv_video341.lib opencv_videoio341.lib opencv_videostab341.lib opencv_xfeatures2d341.lib opencv_ximgproc341.lib opencv_xobjdetect341.lib opencv_xphoto341.lib
预处理器
_CRT_SECURE_NO_WARNINGS _WINSOCK_DEPRECATED_NO_WARNINGS
工程配置完毕
4 配置代码
代码修改:
1包含yolo文件
#include "yolo_v2_class.hpp" //引用动态链接库中的头文件
由于找不到库文件,把文件拷贝到工程main.cpp函数下
2修改权重文件路径
上一层
再上一层
进入
为了省事也可以直接放在工程里同级目录。
运行代码
贴一张原来教程的作者图
main测试代码
、
#include <iostream> #ifdef _WIN32 #define OPENCV #define GPU #endif #include "yolo_v2_class.hpp" //引用动态链接库中的头文件 #include <opencv2/opencv.hpp> #include "opencv2/highgui/highgui.hpp" //#pragma comment(lib, "opencv_world340d.lib") //引入OpenCV链接库 #pragma comment(lib, "yolo_cpp_dll.lib") //引入YOLO动态链接库 //以下两段代码来自yolo_console_dll.sln /* 输入: cv::Mat mat_img, 目标图像 std::vector<bbox_t> result_vec, 所有目标框信息 位置 大小 std::vector<std::string> obj_names 所有目标名字列表 */ void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names, int current_det_fps = -1, int current_cap_fps = -1) { int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; for (auto &i : result_vec) { //遍历目标框 cv::Scalar color = obj_id_to_color(i.obj_id);//根据目标框ID转换颜色 cv::rectangle(mat_img, cv::Rect(i.x, i.y, i.w, i.h), color, 2); // 在图像上画目标框 if (obj_names.size() > i.obj_id) { //如果目标ID小于名字最大ID,证明事先赋予了名字 std::string obj_name = obj_names[i.obj_id]; //根据目标ID获取名字,所以训练的时候直接是分配ID了,根据ID在获取名字 if (i.track_id > 0) obj_name += " - " + std::to_string(i.track_id);// 啥意思?如果有追踪ID?? 加上编号?? cv::Size const text_size = getTextSize(obj_name, cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, 2, 0);// 名字转化为text int const max_width = (text_size.width > i.w + 2) ? text_size.width : (i.w + 2); //画矩形 cv::rectangle(mat_img, cv::Point2f(std::max((int)i.x - 1, 0), std::max((int)i.y - 30, 0)), cv::Point2f(std::min((int)i.x + max_width, mat_img.cols - 1), std::min((int)i.y, mat_img.rows - 1)), color, CV_FILLED, 8, 0); //画文字 putText(mat_img, obj_name, cv::Point2f(i.x, i.y - 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(0, 0, 0), 2); } } if (current_det_fps >= 0 && current_cap_fps >= 0) { std::string fps_str = "FPS detection: " + std::to_string(current_det_fps) + " FPS capture: " + std::to_string(current_cap_fps); putText(mat_img, fps_str, cv::Point2f(10, 20), cv::FONT_HERSHEY_COMPLEX_SMALL, 1.2, cv::Scalar(50, 255, 0), 2); } } std::vector<std::string> objects_names_from_file(std::string const filename) { std::ifstream file(filename); std::vector<std::string> file_lines; if (!file.is_open()) return file_lines; for (std::string line; getline(file, line);) file_lines.push_back(line); std::cout << "object names loaded "; return file_lines; } int main() { std::string names_file = "../../yolo权重/coco.names"; std::string cfg_file = "../../yolo权重/yolov3.cfg"; std::string weights_file = "../../yolo权重/yolov3.weights"; Detector detector(cfg_file, weights_file, 0); //初始化检测器 //std::vector<std::string> obj_names = objects_names_from_file(names_file); //调用获得分类对象名称 //或者使用以下四行代码也可实现读入分类对象文件 //将标签名字从文件逐条读取出来 std::vector<std::string> obj_names; std::ifstream ifs(names_file.c_str()); std::string line; while (getline(ifs, line)) obj_names.push_back(line);//读取成功一条 //测试是否成功读入分类对象文件 for (size_t i = 0; i < obj_names.size(); i++) { std::cout << obj_names[i] << std::endl; //输出标签名字 } cv::VideoCapture capture; capture.open("DJI_0002.MP4"); //打开测试视频 if (!capture.isOpened()) { printf("文件打开失败"); } cv::Mat frame; while (true) { capture >> frame; std::vector<bbox_t> result_vec = detector.detect(frame); // 检测一帧,输出目标框信息容器 draw_boxes(frame, result_vec, obj_names); // 目标图像 所有目标检测框 所有目标总分类名称 cv::namedWindow("test", CV_WINDOW_NORMAL); cv::imshow("test", frame); cv::waitKey(3); } return 0; }