zoukankan      html  css  js  c++  java
  • 全景拼接学习-原理篇 (4) 基本过程

    https://zhuanlan.zhihu.com/p/71777362

     这个和代码主要用于理解

    #include <fstream>
    #include <string>
    #include<iostream>
    #include "opencv2/opencv_modules.hpp"
    #include <opencv2/core/utility.hpp>
    #include "opencv2/imgcodecs.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/stitching/detail/autocalib.hpp"
    #include "opencv2/stitching/detail/blenders.hpp"
    #include "opencv2/stitching/detail/timelapsers.hpp"
    #include "opencv2/stitching/detail/camera.hpp"
    #include "opencv2/stitching/detail/exposure_compensate.hpp"
    #include "opencv2/stitching/detail/matchers.hpp"
    #include "opencv2/stitching/detail/motion_estimators.hpp"
    #include "opencv2/stitching/detail/seam_finders.hpp"
    #include "opencv2/stitching/detail/warpers.hpp"
    #include "opencv2/stitching/warpers.hpp"
    #include <opencv2/xfeatures2d.hpp>
    ​
    using namespace std;
    using namespace cv;
    using namespace cv::detail;
    ​
    ​
    int main(int argc, char** argv)
    {
    	vector<Mat> imgs;
    	ifstream fin("../img.txt");
    	string img_name;
    	while (getline(fin, img_name))
    	{
    		Mat img = imread(img_name);
    		imgs.push_back(img);
    	}
    	​
    		int num_images = imgs.size();    //图像数量
    	cout << "图像数量为" << num_images << endl;
    	cout << "图像读取完毕" << endl;
    	​
    		​
    		​
    		Ptr<FeaturesFinder> finder;    //定义特征寻找器
    	finder = new SurfFeaturesFinder();    //应用SURF方法寻找特征
    										  //finder = new OrbFeaturesFinder();    //应用ORB方法寻找特征
    	vector<ImageFeatures> features(num_images);    //表示图像特征
    	for (int i = 0; i<num_images; i++)
    		(*finder)(imgs[i], features[i]);    //特征检测
    	cout << "特征提取完毕" << endl;
    	vector<MatchesInfo> pairwise_matches;    //表示特征匹配信息变量
    	BestOf2NearestMatcher matcher(false, 0.35f, 6, 6);    //定义特征匹配器,2NN方法
    	matcher(features, pairwise_matches);    //进行特征匹配
    	cout << "特征匹配完毕" << endl;
    
    	HomographyBasedEstimator estimator;    //定义参数评估器
    	vector<CameraParams> cameras;    //表示相机参数,内参加外参
    	estimator(features, pairwise_matches, cameras);    //进行相机参数评
    	for (size_t i = 0; i < cameras.size(); ++i)    //转换相机旋转参数的数据类型
    	{
    		Mat R;
    		cameras[i].R.convertTo(R, CV_32F);
    		cameras[i].R = R;
    	}
    	cout << "相机参数预测完毕" << endl;
    	​
    		​
    		for (size_t i = 0; i < cameras.size(); ++i)
    		{
    			cout << "第" << i << "焦距为" << cameras[i].focal << endl;
    		}
    	// 在一部可以计算重映射误差,想办法让他可以输出出来
    	Ptr<detail::BundleAdjusterBase> adjuster;    //光束平差法,精确相机参数
    												 //adjuster->setRefinementMask();
    	adjuster = new detail::BundleAdjusterReproj();    //重映射误差方法
    													  //adjuster = new detail::BundleAdjusterRay();    //射线发散误差方法
    	​
    		adjuster->setConfThresh(1.0f);    //设置匹配置信度,该值设为1
    	(*adjuster)(features, pairwise_matches, cameras);    //精确评估相机参数
    	​
    		vector<Mat> rmats;
    	for (size_t i = 0; i < cameras.size(); ++i)    //复制相机的旋转参数
    		rmats.push_back(cameras[i].R.clone());
    	waveCorrect(rmats, WAVE_CORRECT_HORIZ);    //进行波形校正
    	for (size_t i = 0; i < cameras.size(); ++i)    //相机参数赋值
    		cameras[i].R = rmats[i];
    	rmats.clear();    //清变量
    	​
    		cout << "利用光束平差法进行相机矩阵更新" << endl;
    	​
    		vector<Point> corners(num_images);    //表示映射变换后图像的左上角坐标
    	vector<UMat> masks_warped(num_images);    //表示映射变换后的图像掩码
    	vector<UMat> images_warped(num_images);    //表示映射变换后的图像
    	vector<Size> sizes(num_images);    //表示映射变换后的图像尺寸
    	vector<UMat> masks(num_images);    //表示源图的掩码
    	​
    		for (int i = 0; i < num_images; ++i)    //初始化源图的掩码
    		{
    			masks[i].create(imgs[i].size(), CV_8U);    //定义尺寸大小
    			masks[i].setTo(Scalar::all(255));    //全部赋值为255,表示源图的所有区域都使用
    		}
    	​
    		Ptr<WarperCreator> warper_creator;    //定义图像映射变换创造器
    	warper_creator = new cv::SphericalWarper();
    	//warper_creator = makePtr<cv::PlaneWarper>();     //平面投影
    	//warper_creator = new cv::CylindricalWarper();    //柱面投影
    	//warper_creator = new cv::SphericalWarper();    //球面投影
    	//warper_creator = new cv::FisheyeWarper();    //鱼眼投影
    	//warper_creator = new cv::StereographicWarper();    //立方体投影
    	​
    		//定义图像映射变换器,设置映射的尺度为相机的焦距,所有相机的焦距都相同
    		vector<double> focals;
    	for (size_t i = 0; i < cameras.size(); ++i)
    	{
    		cout << "第" << i << "焦距为" << cameras[i].focal << endl;
    		focals.push_back(cameras[i].focal);
    	}
    	sort(focals.begin(), focals.end());
    	float warped_image_scale;
    	if (focals.size() % 2 == 1)
    		warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
    	else
    		warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
    	Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale));
    	for (int i = 0; i < num_images; ++i)
    	{
    		Mat_<float> K;
    		cameras[i].K().convertTo(K, CV_32F);    //转换相机内参数的数据类型
    												//对当前图像镜像投影变换,得到变换后的图像以及该图像的左上角坐标
    		corners[i] = warper->warp(imgs[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
    		sizes[i] = images_warped[i].size();    //得到尺寸
    											   //得到变换后的图像掩码
    		warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
    	}
    	​
    		imgs.clear();    //清变量
    	masks.clear();
    	cout << "图像映射完毕" << endl;
    	//创建曝光补偿器,应用增益补偿方法
    	Ptr<ExposureCompensator> compensator =
    		ExposureCompensator::createDefault(ExposureCompensator::GAIN);
    	compensator->feed(corners, images_warped, masks_warped);    //得到曝光补偿器
    	for (int i = 0; i<num_images; ++i)    //应用曝光补偿器,对图像进行曝光补偿
    	{
    		compensator->apply(i, corners[i], images_warped[i], masks_warped[i]);
    	}
    	cout << "图像曝光完毕" << endl;
    
    	//在后面,我们还需要用到映射变换图的掩码masks_warped,因此这里为该变量添加一个副本masks_seam
    	vector<UMat> masks_seam(num_images);
    	for (int i = 0; i<num_images; i++)
    		masks_warped[i].copyTo(masks_seam[i]);
    	​
    		Ptr<SeamFinder> seam_finder;    //定义接缝线寻找器
    										//seam_finder = new NoSeamFinder();    //无需寻找接缝线
    										//seam_finder = new VoronoiSeamFinder();    //逐点法
    										//seam_finder = new DpSeamFinder(DpSeamFinder::COLOR);    //动态规范法
    										//seam_finder = new DpSeamFinder(DpSeamFinder::COLOR_GRAD);
    										//图割法
    	seam_finder = new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR);
    	//seam_finder = new GraphCutSeamFinder(GraphCutSeamFinder::COST_COLOR_GRAD);
    	​
    		vector<UMat> images_warped_f(num_images);
    	for (int i = 0; i < num_images; ++i)    //图像数据类型转换
    		images_warped[i].convertTo(images_warped_f[i], CV_32F);
    	​
    		images_warped.clear();    //清内存
    								  //得到接缝线的掩码图像masks_seam
    	seam_finder->find(images_warped_f, corners, masks_seam);
    	for (size_t i = 0; i < num_images; i++)
    	{
    		namedWindow("mask_cut", WINDOW_NORMAL);
    		imshow("mask_cut", masks_seam[i]);
    		waitKey(0);
    	}
    	​
    		​
    		cout << "拼缝优化完毕" << endl;
    	​
    		vector<Mat> images_warped_s(num_images);
    	Ptr<Blender> blender;    //定义图像融合器
    	​
    		blender = Blender::createDefault(Blender::NO, false);    //简单融合方法
    																 //羽化融合方法
    																 //    blender = Blender::createDefault(Blender::FEATHER, false);
    																 //    //dynamic_cast多态强制类型转换时候使用
    																 //    FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
    																 //    fb->setSharpness(0.005);    //设置羽化锐度
    	​
    		//    blender = Blender::createDefault(Blender::MULTI_BAND, false);    //多频段融合
    		//   MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
    		//   mb->setNumBands(8);   //设置频段数,即金字塔层数
    		​
    		blender->prepare(corners, sizes);    //生成全景图像区域
    	cout << "生成全景图像区域" << endl;
    	vector<Mat> dilate_img(num_images);
    	vector<Mat> masks_seam_new(num_images);
    	Mat tem;
    	Mat element = getStructuringElement(MORPH_RECT, Size(20, 20));    //定义结构元素
    	for (int k = 0; k<num_images; k++)
    	{
    		images_warped_f[k].convertTo(images_warped_s[k], CV_16S);    //改变数据类型
    		dilate(masks_seam[k], masks_seam_new[k], element);    //膨胀运算
    															  //映射变换图的掩码和膨胀后的掩码相“与”,从而使扩展的区域仅仅限于接缝线两侧,其他边界处不受影响
    		masks_warped[k].copyTo(tem);
    		masks_seam_new[k] = masks_seam_new[k] & tem;
    		blender->feed(images_warped_s[k], masks_seam_new[k], corners[k]);    //初始化数据
    		cout << "处理完成" << k << "图片" << endl;
    	}
    	​
    		masks_seam.clear();    //清内存
    	images_warped_s.clear();
    	masks_warped.clear();
    	images_warped_f.clear();
    	​
    		​
    		Mat result, result_mask;
    	//完成融合操作,得到全景图像result和它的掩码result_mask
    	blender->blend(result, result_mask);
    	imwrite("result.jpg", result);    //存储全景图像
    	​
    		return 0;
    }
    

      

  • 相关阅读:
    CCF201604试题
    CCF201512试题
    CCF201509试题
    CCF201509试题
    CCF201503试题
    CCF201503试题
    CCF201412试题
    CCF201412试题
    CCF201409试题
    CCF201409试题
  • 原文地址:https://www.cnblogs.com/kekeoutlook/p/13180050.html
Copyright © 2011-2022 走看看