zoukankan      html  css  js  c++  java
  • OpenCV 应用(1)卡尔曼滤波跟踪

    0 卡尔曼OPENCV 预测鼠标位置

    卡尔曼滤波不要求信号和噪声都是平稳过程的假设条件。对于每个时刻的系统扰动和观测误差(即噪声),只要对它们的统计性质作某些适当的假定,通过对含有噪声的观测信号进行处理,就能在平均的意义上,求得误差为最小的真实信号的估计值。
    
    因此,自从卡尔曼滤波理论问世以来,在通信系统、电力系统、航空航天、环境污染控制、工业控制、雷达信号处理等许多部门都得到了应用,取得了许多成功应用的成果。

    卡尔曼滤波器会对含有噪声的输入数据流(比如计算机视觉中的视频输入)进行递归操作,并产生底层系统状态(比如视频中的位置)在统计意义上的最优估计。

    卡尔曼滤波算法分为两个阶段: 

    预测阶段:卡尔曼滤波器使用由当前点计算的协方差来估计目标的新位置; 
    更新阶段:卡尔曼滤波器记录目标的位置,并为下一次循环计算修正协方差。

     

    第一版

    #include <cv.h>  
    #include <cxcore.h>  
    #include <highgui.h>  
      
    #include <cmath>  
    #include <vector>  
    #include <iostream>  
    using namespace std;  
      
    const int winHeight=600;  
    const int winWidth=800;  
      
      
    CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
      
    //mouse event callback  
    void mouseEvent(int event, int x, int y, int flags, void *param )  
    {  
        if (event==CV_EVENT_MOUSEMOVE) {  
            mousePosition=cvPoint(x,y);  
        }  
    }  
      
    int main (void)  
    {  
        //1.kalman filter setup  
        const int stateNum=4;  
        const int measureNum=2;  
        CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)  
        CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  
        CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)  
        CvRNG rng = cvRNG(-1);  
        float A[stateNum][stateNum] ={//transition matrix  
            1,0,1,0,  
            0,1,0,1,  
            0,0,1,0,  
            0,0,0,1  
        };  
      
        memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
        cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );  
        cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));  
        cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
        cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
        //initialize post state of kalman filter at random  
        cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));  
      
        CvFont font;  
        cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
      
        cvNamedWindow("kalman");  
        cvSetMouseCallback("kalman",mouseEvent);  
        IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
        while (1){  
            //2.kalman prediction  
            const CvMat* prediction=cvKalmanPredict(kalman,0);  
            CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);  
      
            //3.update measurement  
            measurement->data.fl[0]=(float)mousePosition.x;  
            measurement->data.fl[1]=(float)mousePosition.y;  
      
            //4.update  
            cvKalmanCorrect( kalman, measurement );       
      
            //draw   
            cvSet(img,cvScalar(255,255,255,0));  
            cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green  
            cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red  
            char buf[256];  
            sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
            cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
            sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
            cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
              
            cvShowImage("kalman", img);  
            int key=cvWaitKey(3);  
            if (key==27){//esc     
                break;     
            }  
        }        
      
        cvReleaseImage(&img);  
        cvReleaseKalman(&kalman);  
        return 0;  
    }  
     
    

      

    第二版程序

    #include "opencv2/video/tracking.hpp"  
    #include "opencv2/highgui/highgui.hpp"  
    #include <stdio.h>  
    using namespace cv;
    using namespace std;
    
    const int winHeight = 600;
    const int winWidth = 800;
    
    
    Point mousePosition = Point(winWidth >> 1, winHeight >> 1);
    
    //mouse event callback  
    void mouseEvent(int event, int x, int y, int flags, void *param)
    {
    	if (event == CV_EVENT_MOUSEMOVE) {
    		mousePosition = Point(x, y);
    	}
    }
    
    int main(void)
    {
    	RNG rng;
    	//1.kalman filter setup  
    	const int stateNum = 4;                                      //状态值4×1向量(x,y,△x,△y)  
    	const int measureNum = 2;                                    //测量值2×1向量(x,y)    
    	KalmanFilter KF(stateNum, measureNum, 0);
    
    	KF.transitionMatrix = *(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);  //转移矩阵A  
    	setIdentity(KF.measurementMatrix);                                             //测量矩阵H  
    	setIdentity(KF.processNoiseCov, Scalar::all(1e-5));                            //系统噪声方差矩阵Q  
    	setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));                        //测量噪声方差矩阵R  
    	setIdentity(KF.errorCovPost, Scalar::all(1));                                  //后验错误估计协方差矩阵P  
    	rng.fill(KF.statePost, RNG::UNIFORM, 0, winHeight>winWidth ? winWidth : winHeight);   //初始状态值x(0)  
    	Mat measurement = Mat::zeros(measureNum, 1, CV_32F);                           //初始测量值x'(0),因为后面要更新这个值,所以必须先定义  
    
    	namedWindow("kalman");
    	setMouseCallback("kalman", mouseEvent);
    
    	Mat image(winHeight, winWidth, CV_8UC3, Scalar(0));
    
    	while (1)
    	{
    		//2.kalman prediction  
    		Mat prediction = KF.predict();
    		Point predict_pt = Point(prediction.at<float>(0), prediction.at<float>(1));   //预测值(x',y')  
    
    		//3.update measurement  
    		measurement.at<float>(0) = (float)mousePosition.x;
    		measurement.at<float>(1) = (float)mousePosition.y;
    
    		//4.update  
    		KF.correct(measurement);
    
    		//draw   
    		image.setTo(Scalar(255, 255, 255, 0));
    		circle(image, predict_pt, 5, Scalar(0, 255, 0), 3);    //predicted point with green  
    		circle(image, mousePosition, 5, Scalar(255, 0, 0), 3); //current position with red          
    
    		char buf[256];
    		sprintf_s(buf, 256, "predicted position:(%3d,%3d)", predict_pt.x, predict_pt.y);
    		putText(image, buf, Point(10, 30), CV_FONT_HERSHEY_SCRIPT_COMPLEX, 1, Scalar(0, 0, 0), 1, 8);
    		sprintf_s(buf, 256, "current position :(%3d,%3d)", mousePosition.x, mousePosition.y);
    		putText(image, buf, cvPoint(10, 60), CV_FONT_HERSHEY_SCRIPT_COMPLEX, 1, Scalar(0, 0, 0), 1, 8);
    
    		imshow("kalman", image);
    		int key = waitKey(3);
    		if (key == 27){//esc     
    			break;
    		}
    	}
    }
    

      

    1 OPENCV自带样例

     //状态坐标白色
    drawCross(statePt, Scalar(255, 255, 255), 3);
    //测量坐标蓝色
    drawCross(measPt, Scalar(0, 0, 255), 3);
    //预测坐标绿色
    drawCross(predictPt, Scalar(0, 255, 0), 3);

    #include "opencv2/video/tracking.hpp"
    #include "opencv2/highgui/highgui.hpp"
    
    #include <stdio.h>
    
    using namespace cv;
    
    static inline Point calcPoint(Point2f center, double R, double angle)
    {
    	return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
    }
    
    
    
    int main2(int, char**)
    {
    	/*
    	使用kalma步骤一
    	下面语句到for前都是kalman的初始化过程,一般在使用kalman这个类时需要初始化的值有:
    	转移矩阵,测量矩阵,过程噪声协方差,测量噪声协方差,后验错误协方差矩阵,
    	前一状态校正后的值,当前观察值
    	*/
    
    
    	Mat img(500, 500, CV_8UC3);
    	KalmanFilter KF(2, 1, 0);
    	Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
    	Mat processNoise(2, 1, CV_32F);
    	Mat measurement = Mat::zeros(1, 1, CV_32F);
    	char code = (char)-1;
    
    	for (;;)
    	{
    		randn(state, Scalar::all(0), Scalar::all(0.1));//产生均值为0,标准差为0.1的二维高斯列向量
    		KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);//转移矩阵为[1,1;0,1]
    
    		//函数setIdentity是给参数矩阵对角线赋相同值,默认对角线值值为1
    		setIdentity(KF.measurementMatrix);
    		setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//系统过程噪声方差矩阵
    		setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//测量过程噪声方差矩阵
    		setIdentity(KF.errorCovPost, Scalar::all(1));//后验错误估计协方差矩阵
    
    		//statePost为校正状态,其本质就是前一时刻的状态
    		randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
    
    		for (;;)
    		{
    			Point2f center(img.cols*0.5f, img.rows*0.5f);
    			float R = img.cols / 3.f;
    			//state中存放起始角,state为初始状态
    			double stateAngle = state.at<float>(0);
    			Point statePt = calcPoint(center, R, stateAngle);
    
    
    			/*
    			使用kalma步骤二
    			调用kalman这个类的predict方法得到状态的预测值矩阵
    			*/
    
    
    			Mat prediction = KF.predict();
    			//用kalman预测的是角度
    			double predictAngle = prediction.at<float>(0);
    			Point predictPt = calcPoint(center, R, predictAngle);
    
    			randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
    
    			// generate measurement
    			//带噪声的测量
    			measurement += KF.measurementMatrix*state;
    
    			double measAngle = measurement.at<float>(0);
    			Point measPt = calcPoint(center, R, measAngle);
    
    			// plot points
    			//这个define语句是画2条线段(线长很短),其实就是画一个“X”叉符号
    
    #define drawCross( center, color, d )                                 
                    line( img, Point( center.x - d, center.y - d ),                
                                 Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); 
                    line( img, Point( center.x + d, center.y - d ),                
                                 Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
    
    			img = Scalar::all(0);
    			//状态坐标白色
    			drawCross(statePt, Scalar(255, 255, 255), 3);
    			//测量坐标蓝色
    			drawCross(measPt, Scalar(0, 0, 255), 3);
    			//预测坐标绿色
    			drawCross(predictPt, Scalar(0, 255, 0), 3);
    			//真实值和测量值之间用红色线连接起来
    			line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
    			//真实值和估计值之间用黄色线连接起来
    			line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);
    
    
    			/*
    			使用kalma步骤三
    			调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
    			*/
    
    			if (theRNG().uniform(0, 4) != 0)
    				KF.correct(measurement);
    
    			randn(processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
    			//不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
    			state = KF.transitionMatrix*state + processNoise;
    
    			imshow("Kalman", img);
    			code = (char)waitKey(100);
    
    			if (code > 0)
    				break;
    		}
    		if (code == 27 || code == 'q' || code == 'Q')
    			break;
    	}
    
    	return 0;
    }
    

      2 

    白色真实位置

    蓝色观测位置

    绿色实际位置

    版本一

     

    //#include <stdafx.h>
    #include <cv.h>  
    #include <highgui.h>  
    #include <stdio.h>  
    
    int main()
    {
    	cvNamedWindow("Kalman", 1);
    	CvRandState random;//创建随机  
    	cvRandInit(&random, 0, 1, -1, CV_RAND_NORMAL);
    	IplImage * image = cvCreateImage(cvSize(600, 450), 8, 3);
    	CvKalman * kalman = cvCreateKalman(4, 2, 0);//状态变量4维,x、y坐标和在x、y方向上的速度,测量变量2维,x、y坐标  
    
    	CvMat * xK = cvCreateMat(4, 1, CV_32FC1);//初始化状态变量,坐标为(40,40),x、y方向初速度分别为10、10  
    	xK->data.fl[0] = 40.;
    	xK->data.fl[1] = 40;
    	xK->data.fl[2] = 10;
    	xK->data.fl[3] = 10;
    
    	const float F[] = { 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1 };//初始化传递矩阵 [1  0  1  0]  
    	//               [0  1  0  1]  
    	//               [0  0  1  0]  
    	//               [0  0  0  1]  
    	memcpy(kalman->transition_matrix->data.fl, F, sizeof(F));
    
    
    
    	CvMat * wK = cvCreateMat(4, 1, CV_32FC1);//过程噪声  
    	cvZero(wK);
    
    	CvMat * zK = cvCreateMat(2, 1, CV_32FC1);//测量矩阵2维,x、y坐标  
    	cvZero(zK);
    
    	CvMat * vK = cvCreateMat(2, 1, CV_32FC1);//测量噪声  
    	cvZero(vK);
    
    	cvSetIdentity(kalman->measurement_matrix, cvScalarAll(1));//初始化测量矩阵H=[1  0  0  0]  
    	//                [0  1  0  0]  
    	cvSetIdentity(kalman->process_noise_cov, cvScalarAll(1e-1));/*过程噪声____设置适当数值,
    																增大目标运动的随机性,
    																但若设置的很大,则系统不能收敛,
    																即速度越来越快*/
    	cvSetIdentity(kalman->measurement_noise_cov, cvScalarAll(10));/*观测噪声____故意将观测噪声设置得很大,
    																  使之测量结果和预测结果同样存在误差*/
    	cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));/*后验误差协方差*/
    	cvRand(&random, kalman->state_post);
    
    	CvMat * mK = cvCreateMat(1, 1, CV_32FC1);  //反弹时外加的随机化矩阵  
    
    
    	while (1){
    		cvZero(image);
    		cvRectangle(image, cvPoint(30, 30), cvPoint(570, 420), CV_RGB(255, 255, 255), 2);//绘制目标弹球的“撞击壁”  
    		const CvMat * yK = cvKalmanPredict(kalman, 0);//计算预测位置  
    		cvRandSetRange(&random, 0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0);
    		cvRand(&random, vK);//设置随机的测量误差  
    		cvMatMulAdd(kalman->measurement_matrix, xK, vK, zK);//zK=H*xK+vK  
    		cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*xK, float, 0, 0)), cvRound(CV_MAT_ELEM(*xK, float, 1, 0))),
    			4, CV_RGB(255, 255, 255), 2);//白圈,真实位置  
    		cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*yK, float, 0, 0)), cvRound(CV_MAT_ELEM(*yK, float, 1, 0))),
    			4, CV_RGB(0, 255, 0), 2);//绿圈,预估位置  
    		cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*zK, float, 0, 0)), cvRound(CV_MAT_ELEM(*zK, float, 1, 0))),
    			4, CV_RGB(0, 0, 255), 2);//蓝圈,观测位置  
    
    		cvRandSetRange(&random, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0);
    		cvRand(&random, wK);//设置随机的过程误差  
    		cvMatMulAdd(kalman->transition_matrix, xK, wK, xK);//xK=F*xK+wK  
    
    		if (cvRound(CV_MAT_ELEM(*xK, float, 0, 0))<30){  //当撞击到反弹壁时,对应轴方向取反外加随机化  
    			cvRandSetRange(&random, 0, sqrt(1e-1), 0);
    			cvRand(&random, mK);
    			xK->data.fl[2] = 10 + CV_MAT_ELEM(*mK, float, 0, 0);
    		}
    		if (cvRound(CV_MAT_ELEM(*xK, float, 0, 0))>570){
    			cvRandSetRange(&random, 0, sqrt(1e-2), 0);
    			cvRand(&random, mK);
    			xK->data.fl[2] = -(10 + CV_MAT_ELEM(*mK, float, 0, 0));
    		}
    		if (cvRound(CV_MAT_ELEM(*xK, float, 1, 0))<30){
    			cvRandSetRange(&random, 0, sqrt(1e-1), 0);
    			cvRand(&random, mK);
    			xK->data.fl[3] = 10 + CV_MAT_ELEM(*mK, float, 0, 0);
    		}
    		if (cvRound(CV_MAT_ELEM(*xK, float, 1, 0))>420){
    			cvRandSetRange(&random, 0, sqrt(1e-3), 0);
    			cvRand(&random, mK);
    			xK->data.fl[3] = -(10 + CV_MAT_ELEM(*mK, float, 0, 0));
    		}
    
    		printf("%f_____%f
    ", xK->data.fl[2], xK->data.fl[3]);
    
    
    		cvShowImage("Kalman", image);
    
    		cvKalmanCorrect(kalman, zK);
    
    
    		if (cvWaitKey(100) == 'e'){
    			break;
    		}
    	}
    
    
    	cvReleaseImage(&image);/*释放图像*/
    	cvDestroyAllWindows();
    }
    

      

    本版二

    #include "opencv2/video/tracking.hpp"
    #include "opencv2/highgui/highgui.hpp"
    
    #include <stdio.h>
    
    using namespace cv;
    
    static inline Point calcPoint(Point2f center, double R, double angle)
    {
    	return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
    }
    
    
    
    int main2(int, char**)
    {
    	/*
    	使用kalma步骤一
    	下面语句到for前都是kalman的初始化过程,一般在使用kalman这个类时需要初始化的值有:
    	转移矩阵,测量矩阵,过程噪声协方差,测量噪声协方差,后验错误协方差矩阵,
    	前一状态校正后的值,当前观察值
    	*/
    
    
    	Mat img(500, 500, CV_8UC3);
    	KalmanFilter KF(2, 1, 0);
    	Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
    	Mat processNoise(2, 1, CV_32F);
    	Mat measurement = Mat::zeros(1, 1, CV_32F);
    	char code = (char)-1;
    
    	for (;;)
    	{
    		randn(state, Scalar::all(0), Scalar::all(0.1));//产生均值为0,标准差为0.1的二维高斯列向量
    		KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);//转移矩阵为[1,1;0,1]
    
    		//函数setIdentity是给参数矩阵对角线赋相同值,默认对角线值值为1
    		setIdentity(KF.measurementMatrix);
    		setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//系统过程噪声方差矩阵
    		setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//测量过程噪声方差矩阵
    		setIdentity(KF.errorCovPost, Scalar::all(1));//后验错误估计协方差矩阵
    
    		//statePost为校正状态,其本质就是前一时刻的状态
    		randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));
    
    		for (;;)
    		{
    			Point2f center(img.cols*0.5f, img.rows*0.5f);
    			float R = img.cols / 3.f;
    			//state中存放起始角,state为初始状态
    			double stateAngle = state.at<float>(0);
    			Point statePt = calcPoint(center, R, stateAngle);
    
    
    			/*
    			使用kalma步骤二
    			调用kalman这个类的predict方法得到状态的预测值矩阵
    			*/
    
    
    			Mat prediction = KF.predict();
    			//用kalman预测的是角度
    			double predictAngle = prediction.at<float>(0);
    			Point predictPt = calcPoint(center, R, predictAngle);
    
    			randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
    
    			// generate measurement
    			//带噪声的测量
    			measurement += KF.measurementMatrix*state;
    
    			double measAngle = measurement.at<float>(0);
    			Point measPt = calcPoint(center, R, measAngle);
    
    			// plot points
    			//这个define语句是画2条线段(线长很短),其实就是画一个“X”叉符号
    
    #define drawCross( center, color, d )                                 
                    line( img, Point( center.x - d, center.y - d ),                
                                 Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); 
                    line( img, Point( center.x + d, center.y - d ),                
                                 Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
    
    			img = Scalar::all(0);
    			//状态坐标白色
    			drawCross(statePt, Scalar(255, 255, 255), 3);
    			//测量坐标蓝色
    			drawCross(measPt, Scalar(0, 0, 255), 3);
    			//预测坐标绿色
    			drawCross(predictPt, Scalar(0, 255, 0), 3);
    			//真实值和测量值之间用红色线连接起来
    			line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
    			//真实值和估计值之间用黄色线连接起来
    			line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);
    
    
    			/*
    			使用kalma步骤三
    			调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
    			*/
    
    			if (theRNG().uniform(0, 4) != 0)
    				KF.correct(measurement);
    
    			randn(processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
    			//不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
    			state = KF.transitionMatrix*state + processNoise;
    
    			imshow("Kalman", img);
    			code = (char)waitKey(100);
    
    			if (code > 0)
    				break;
    		}
    		if (code == 27 || code == 'q' || code == 'Q')
    			break;
    	}
    
    	return 0;
    }
    

      

  • 相关阅读:
    mongodb 数据库操作--备份 还原 导出 导入
    括号匹配算法求解(用栈实现)
    最短路径(图中两点间最短路径)
    城市之间的最短总距离(最小生成树算法)
    简单的约瑟夫环算法
    动态数组排序实例
    折半查找算法
    对字符串进行快速排序(即字符数组排序)
    字符串数组排序的快速排序实现
    插入排序反序排序
  • 原文地址:https://www.cnblogs.com/kekeoutlook/p/8343383.html
Copyright © 2011-2022 走看看