zoukankan      html  css  js  c++  java
  • 通过Docker构建TensorFlow Serving

    最近在用Docker搭建TensorFlow Serving, 在查阅了官方资料后,发现其文档内有不少冗余的步骤,便一步步排查,终于找到了更简单的Docker镜像构建方法。这里有两种方式:

    版本一:

    FROM ubuntu:18.04
    
    # Install general packages
    RUN apt-get update && apt-get install -y wget && 
        apt-get clean && 
        rm -rf /var/lib/apt/lists/*
        
    # New installation of tensorflow-model-server    
    RUN TEMP_DEB="$(mktemp)" 
        && wget -O "$TEMP_DEB" 'http://storage.googleapis.com/tensorflow-serving-apt/pool/tensorflow-model-server-1.8.0/t/tensorflow-model-server/tensorflow-model-server_1.8.0_all.deb'  
        && dpkg -i "$TEMP_DEB"  
        && rm -f "$TEMP_DEB"  
        && mkdir /tmp/model-export    
        
    EXPOSE 9000
    
    # Serve the model when the container starts
    ENTRYPOINT ["tensorflow_model_server"]
    CMD ["--port=9000", "--model_name=model", "--model_base_path=/tmp/model-export"]
    

    版本二

    FROM ubuntu:18.04
    
    # Install general packages
    RUN apt-get update && apt-get install -y curl gnupg
    
    # New installation of tensorflow-model-server    
    RUN echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list  
        && curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add -  
        && apt-get update && apt-get install tensorflow-model-server  
        && apt-get clean  
        && rm -rf /var/lib/apt/lists/*  
        && mkdir /tmp/model-export 
    
    EXPOSE 9000
    
    # Serve the model when the container starts
    ENTRYPOINT ["tensorflow_model_server"]
    CMD ["--port=9000", "--model_name=model", "--model_base_path=/tmp/model-export"]
    

    版本一生成的Docker镜像更小些,所以比较推荐第一种方法。至于为何会有第二个版本,因为是从官方的文档上找到的,而第一个来源自别人所提出问题的解答

    将上述代码保存为dockerfile文件,再执行docker build命令:

    docker build -t tensorflow-serving -f dockerfile .
    

    之后,再通过docker run启动容器即可:

    docker run -p 9000:9000 tensorflow-serving
    
  • 相关阅读:
    Java从入门到实战之(22)数组之练习
    LeetCode343. 整数拆分
    LeetCode64. 最小路径和
    LeetCode120. 三角形最小路径和
    LeetCode37. 解数独
    实验:通过Telnet访问路由器
    telnet 命令使用方法详解,telnet命令怎么用?
    COBIT、ITIL
    500 internal privoxy error错误怎么解决?
    iPhone12有充电器和耳机吗
  • 原文地址:https://www.cnblogs.com/kenwoo/p/9157704.html
Copyright © 2011-2022 走看看