zoukankan      html  css  js  c++  java
  • Supervised Learning003

    Constructing GLMs

    1. Ordinary Least Squares

       Ordinary least squares is a special case of the GLM family of models, consider the setting where the target variable y (also called the response variable in GLM terminology) is continuous, and we model the conditional distribution of y given x as a Gaussian N(μ, σ2). ( Here μ may depend x.) So, we let the ExponentialFamily(η) distribution be the Gaussian distribution. As we saw previously, in the formulation of the Gaussian as an exponential family distribution, we had μ = η. So we have 

      hθ(x) = E[y|x; θ] = μ = η = θTx

    2. Logistic Regression                                                                                                                                                    Here we are interested in binary classification, so y ∈ {0,1}. Given that y is binary-valued, it therefore seems natural to choose the Bernoulli familu of distributions to model the conditional distribution of y given x. In our formulation of the Bernoulli distribution as an exponential family distribution, we had Φ = 1/(1 + e). Furthermore, note that if y|x;θ ~ Bernoulli(Φ), then E[y|x; θ] = Φ. So, following a similar derivation as the one for ordinary least squares, we get:                                                                                                                              hθ(x) = E[y|x; θ] = Φ = 1/(1 + e) = 1/(1 + e-θ^Tx)
    3. Softmax Regression       

    Derive a GLM for modelling multinomial data. To do so, we will begin by expressing the multinomial as an exponential family distribution.

    To parameterize a multinomial over k possible outcomes, one could use k parameters Φ1,...,Φk specifying the probability of each of the outcomes. However, these parameters would be redundant, or more formally, they would not be independent (since knowing any k-1 of the 

      

                                                                                                                                               

     

     

     

     

  • 相关阅读:
    Python入门_绘制多个五角形_turtle
    Selenium3+python自动化6-八种元素元素定位(Firebug和firepath)
    MongoDB入门(3)- MongoDB备份与恢复
    MongoDB入门(2)- MongoDB安装
    MongoDB入门(1)- MongoDB简介
    Elastic Search操作入门
    应用Xml.Linq读xml文件
    Struts2入门(1)-第一个Struts2程序
    Hibernate入门(4)- Hibernate数据操作
    Hibernate入门(3)- 持久对象的生命周期介绍
  • 原文地址:https://www.cnblogs.com/yuelien/p/12937699.html
Copyright © 2011-2022 走看看