zoukankan      html  css  js  c++  java
  • poj 3264

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 44594   Accepted: 20931
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    USACO 2007 January Silver

    简单的区间求最值。

    Problem: 3264

    User: ksq2013

    Memory: 1736K

    Time: 3829MS

    Language: G++

    Result: Accepted

    #include<cstdio>
    #include<iostream>
    using namespace std;
    int n,q,maxnum[201000],minnum[201000];
    void build(int s,int t,int k)
    {
    	if(!(s^t)){
    		scanf("%d",&maxnum[k]);
    		minnum[k]=maxnum[k];
    		return;
    	}int m=(s+t)>>1;
    	build(s,m,k<<1);
    	build(m+1,t,k<<1|1);
    	maxnum[k]=max(maxnum[k<<1],maxnum[k<<1|1]);
    	minnum[k]=min(minnum[k<<1],minnum[k<<1|1]);
    }
    int query1(int s,int t,int k,int l,int r)
    {
    	if(l<=s&&t<=r)return maxnum[k];
    	int m=(s+t)>>1,res=0;
    	if(l<=m)res=query1(s,m,k<<1,l,r);
    	if(m<r)res=max(res,query1(m+1,t,k<<1|1,l,r));
    	return res;
    }
    int query2(int s,int t,int k,int l,int r)
    {
    	if(l<=s&&t<=r)return minnum[k];
    	int m=(s+t)>>1,res=1000100;
    	if(l<=m)res=query2(s,m,k<<1,l,r);
    	if(m<r)res=min(res,query2(m+1,t,k<<1|1,l,r));
    	return res;
    }
    int main()
    {
    	scanf("%d%d",&n,&q);
    	build(1,n,1);
    	for(;q;q--){
    		int a,b;
    		scanf("%d%d",&a,&b);
    		printf("%d
    ",query1(1,n,1,a,b)-query2(1,n,1,a,b));
    	}
    	return 0;
    }




  • 相关阅读:
    mysql对库,表,数据类型的操作以及完整性约束
    mysql数据库初步了解
    响应式及Bootstrap
    事件流丶事件对象
    JQuery初识(三 )
    JQuery初识(二)
    JQuery初识
    sencha touch tpl 实现按钮功能
    sencha touch 分享到微博扩展
    sencha touch 隐藏滚动条样式的几种方式
  • 原文地址:https://www.cnblogs.com/keshuqi/p/5957781.html
Copyright © 2011-2022 走看看