Description:
Given an array consisting of n integers, find the contiguous subarray of
given length k that has the maximum average value. And you need to
output the maximum average value.
Example 1:
Input: [1,12,-5,-6,50,3], k = 4 Output: 12.75 Explanation: Maximum average is (12-5-6+50)/4 = 51/4 = 12.75
Note:
1 <= k <= n <= 30,000.
Elements of the given array will be in the range [-10,000, 10,000].
My Solution:
class Solution { public double findMaxAverage(int[] nums, int k) { int max = Integer.MIN_VALUE; int len = nums.length; int temp = 0; if(len == k){ for(int num : nums){ temp += num; } return (temp * 1.0)/k; } for(int i = 0;i <= len - k;i++){ temp = 0; for(int j = i;j < i + k;j++){ temp += nums[j]; } if(temp > max){ max = temp; } } return (max * 1.0) / k; } }
Better Solution1:
//sum[i]存储的是nums前i+1个元素之和 //sum[i] -sum[i - k]表示以i为最后一个元素,k个元素之和 public class Solution { public double findMaxAverage(int[] nums, int k) { int[] sum = new int[nums.length]; sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) sum[i] = sum[i - 1] + nums[i]; double res = sum[k - 1] * 1.0 / k; for (int i = k; i < nums.length; i++) { res = Math.max(res, (sum[i] - sum[i - k]) * 1.0 / k); } return res; } }
Better Solution2:
public class Solution { //先计算出0开始的前k个元素之和,由于nums[1]+nums[2]...nums[k]= nums[0]+nums[1]+...nums[k - 1]+nums[k] - nums[0],利用这个公式一直以nums[i]为最后一个元素滑动 public double findMaxAverage(int[] nums, int k) { double sum=0; for(int i=0;i<k;i++) sum+=nums[i]; double res=sum; for(int i=k;i<nums.length;i++){ sum+=nums[i]-nums[i-k]; res=Math.max(res,sum); } return res/k; } }