zoukankan      html  css  js  c++  java
  • Leetcode 204计数质数

    计数质数

    统计所有小于非负整数 的质数的数量。

    示例:

    输入: 10

    输出: 4

    解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

    比计算少n中素数的个数。
    素数又称质数,是指仅仅能被1和它自身相除的自然数。

    须要注意的是1既不是素数也不是合数。

    2是最小的素数。

    使用推断一个数是否是素数的函数,那么这个函数须要进行一轮循环,在给定的小于n中又要进行一轮循环。所以时间复杂度是O(n^2)。

    能够对推断一个数是否是素数的函数进行优化。对于数i,能够仅仅对2到√i之间的数进行推断。这样时间复杂度减少到了O(nlogn)。

    可是上面的解法在leetcode中还是超时。

    于是想是否存在仅仅进行一轮循环的方法。即在遍历1至n-1一次的过程中记录下素数的个数。可是后面就不知道怎么处理。

    然后看leetcode中的小提示,发现了一种更优的寻找素数的方法。首先看以下的这个图:

     

    这个图事实上就道出了这个算法是怎么进行的。使用一个长度是n的hash表,最開始这个hash表中的全部元素都是没有被处理的,从2開始遍历,假设这个元素没有被处理,那么将素数的个数加1,然后将2*2,2*3,2*4……2* k( 2* k < n)标记为已经被处理了的。接着開始处理3,同理将3*2,3*3,3*4…..3*m( 3 * m < n)标记为已被处理了的,接着是4,因为这个元素已经被处理。继续向后遍历。这样一直处理下去。

    从这道题中又意识到了一个整数会溢出会导致问题的小技巧。

     1 import java.math.*;
     2 class Solution {
     3     public int countPrimes(int n){
     4         int[] mask=new int[n];
     5         int count=0;
     6         for(int i=2;i<n;i++){
     7             if(mask[i]==0){
     8                 count++;
     9                 for(int j=2;i*j<n;j++){
    10                     mask[i*j]=1;
    11                 }
    12             }
    13         }
    14         return count;
    15     }
    16 }
  • 相关阅读:
    开始程序猿的生涯了
    将博客搬至CSDN
    java如何修改java.library.path并且不重启jvm也能生效
    JCEF 如何修改右键菜单项(JCEF在右键菜单中添加开发者选项-show dev tools)
    JS调用JCEF方法
    java cef3 禁止右键菜单项
    [java报错]Could not instantiate listener XXXXXX
    ThinkPhp的搭建
    phpMyAdmin的配置
    铁路局12306余票查询的实现
  • 原文地址:https://www.cnblogs.com/kexinxin/p/10203011.html
Copyright © 2011-2022 走看看