zoukankan      html  css  js  c++  java
  • ROC与AUC原理

    来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882

    来自:https://blog.csdn.net/u010705209/article/details/53037481

    在分类模型中,roc曲线和auc曲线作为衡量一个模型拟合程度的指标。

    分类模型评估:

     指标  描述  Scikit-learn函数
     Precision  AUC  from sklearn.metrics import precision_score
     Recall  召回率  from sklearn.metrics import recall_score
     F1  F1值  from sklearn.metrics import f1_score
     Confusion Matrix  混淆矩阵  from sklearn.metrics import confusion_matrix
     ROC  ROC曲线  from sklearn.metrics import confusion_matrix
     AUC  ROC曲线下的面积  from sklearn.metrics import auc

    回归模型评估:

    指标 描述 Scikit-learn函数
    Mean Square Error (MSE, RMSE) 平均方差 from sklearn.metrics import mean_squared_error
    Absolute Error (MAE, RAE) 绝对误差 from sklearn.metrics import mean_absolute_error, median_absolute_error
    R-Squared R平方值 from sklearn.metrics import r2_score

    roc和auc定义

    roc全称是“受试者工作特征”(recevier operating characteristic)。roc曲线的面积就是auc(area under the curve)。auc用于衡量“二分类问题”机器学习算法性能(泛化能力)。

    1. 了解roc首先了解混淆矩阵:

    例如用一个分类模型来判别一个水果是苹果还是梨,混淆矩阵将会模型的预测结果总结成如下表所示的表格。

         模型预测结果  模型预测结果
        苹果
    真是结果 苹果 10 2
    真是结果 3 15

    通过上述表格可以看出,样本的数量一共是10+2+3+15=3010+2+3+15=30个样本。其中苹果有10+2=1210+2=12个,梨有3+15=183+15=18个。该模型预测的苹果的数量是10+3=1310+3=13个,有1010个是预测正确的,33个是预测错误的。该模型预测的梨的数量是2+15=172+15=17个,其中有1515个是预测正确的,22个是预测错误的。

    混淆矩阵

    对于一个二分类的模型,其模型的混淆矩阵是一个2×22×2的矩阵。如下图所示: 

        Predicted condition Predicted condition
        positive negative
    True condition positive True Positive True Negative
    True condition negative False Positive False Negative

    混淆矩阵比模型的精度的评价指标更能够详细地反映出模型的”好坏”。模型的精度指标,在正负样本数量不均衡的情况下,会出现容易误导的结果

    • True Positive:真正类(TP),样本的真实类别是正类,并且模型预测的结果也是正类。
    • False Negative:假负类(FN),样本的真实类别是正类,但模型将其预测成为负类。
    • False Positive:假正类(FP),样本的真实类别是负类,但模型将其预测成正类。
    • True Negative:真负类(TN),样本的真实类别是负类,并且模型将其预测成为负类。

    混淆矩阵中,衍生出各种评价的指标。

    精度:

    模型预测正确的个数 / 样本的总个数,

    一般情况下,模型的精度越高,说明模型的效果越好。

    召回率:

    模型预测为正类的样本的数量,占总的正类样本数量的比值。

     

    Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。

    TPR:

    样本中的真实正例类别总数即TP+FN。TPR即True Positive Rate,TPR = TP/(TP+FN)。 

    FPR:
    同理,样本中的真实反例类别总数为FP+TN。FPR即False Positive Rate,FPR=FP/(TN+FP)。

    截断点:

    还有一个概念叫”截断点”。机器学习算法对test样本进行预测后,可以输出各test样本对某个类别的相似度概率。比如t1是P类别的概率为0.3,一般我们认为概率低于0.5,t1就属于类别N。这里的0.5,就是”截断点”。 
    总结一下,对于计算ROC,最重要的三个概念就是TPRFPR截断点

    截断点取不同的值,TPRFPR的计算结果也不同。将截断点不同取值下对应的TPRFPR结果画于二维坐标系中得到的曲线,就是ROC曲线。横轴用FPR表示。

    2. sklearn计算roc

    sklearn给出了一个计算roc的例子:

    y = np.array([1, 1, 2, 2])
    scores = np.array([0.1, 0.4, 0.35, 0.8])
    fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)

    通过计算,得到的结果(TPRFPR截断点)为

    fpr = array([ 0. ,  0.5,  0.5,  1. ])
    tpr = array([ 0.5,  0.5,  1. ,  1. ])
    thresholds = array([ 0.8 ,  0.4 ,  0.35,  0.1 ])    #截断点

    将结果中的FPR与TPR画到二维坐标中,得到的ROC曲线如下(蓝色线条表示),ROC曲线的面积用AUC表示(淡黄色阴影部分)。

    详细计算过程:

    y = np.array([1, 1, 2, 2])
    scores = np.array([0.1, 0.4, 0.35, 0.8])

    (1). 分析数据

    y是一个一维数组(样本的真实分类)。数组值表示类别(一共有两类,1和2)。我们假设y中的1表示反例,2表示正例。即将y重写为:

    y_true = [0, 0, 1, 1]

    score即各个样本属于正例的概率。

    (2). 针对score,将数据排序

    样本 预测属于P的概率(score) 真实类别
    y[0] 0.1 N
    y[2] 0.35 P
    y[1] 0.4 N
    y[3] 0.8 P

    (3). 将截断点依次取值为score值

    将截断点依次取值为0.1, 0.35, 0.4, 0.8时,计算TPR和FPR的结果。

    3.1. 截断点为.01

    说明只要score>=0.1,它的预测类别就是正例。 
    此时,因为4个样本的score都大于等于0.1,所以,所有样本的预测类别都为P。

    scores = [0.1, 0.4, 0.35, 0.8]
    y_true = [0, 0, 1, 1] 
    y_pred = [1, 1, 1, 1]

     

    TPR = TP/(TP+FN) = 1 
    FPR = FP/(TN+FP) = 1

    3.2. 截断点为0.35

    说明只要score>=0.35,它的预测类别就是P。 
    此时,因为4个样本的score有3个大于等于0.35。所以,所有样本的预测类有3个为P(2个预测正确,1一个预测错误);1个样本被预测为N(预测正确)。

    scores = [0.1, 0.4, 0.35, 0.8]
    y_true = [0, 0, 1, 1] 
    y_pred = [0, 1, 1, 1]

     

    TPR = TP/(TP+FN) = 1 
    FPR = FP/(TN+FP) = 0.5

    3.3. 截断点为0.4

    说明只要score>=0.4,它的预测类别就是P。 
    此时,因为4个样本的score有2个大于等于0.4。所以,所有样本的预测类有2个为P(1个预测正确,1一个预测错误);2个样本被预测为N(1个预测正确,1一个预测错误)。

    scores = [0.1, 0.4, 0.35, 0.8]
    y_true = [0, 0, 1, 1] 
    y_pred = [0, 1, 0, 1]

    TPR = TP/(TP+FN) = 0.5 
    FPR = FP/(TN+FP) = 0.5

    3.4. 截断点为0.8

    说明只要score>=0.8,它的预测类别就是P。所以,所有样本的预测类有1个为P(1个预测正确);3个样本被预测为N(2个预测正确,1一个预测错误)。

    scores = [0.1, 0.4, 0.35, 0.8]
    y_true = [0, 0, 1, 1] 
    y_pred = [0, 0, 0, 1]

    TPR = TP/(TP+FN) = 0.5 
    FPR = FP/(TN+FP) = 0

    (4). 心得

    用下面描述表示TPR和FPR的计算过程,更容易记住

    • TPR:真实的正例中,被预测正确的比例
    • FPR:真实的反例中,被预测正确的比例
  • 相关阅读:
    面向对象 (11)求交并集 判断字符形式
    软件工程 课程总结
    面向对象 (10)正则判邮箱
    面向对象 (9)计算时间差 找随机数范围内规律
    面向对象 (8)字符串出现字符个数统计 字母组成回文串判定
    面向对象 (7)中介买房 平均数异常处理
    面向对象 (6)买房付首款
    第16周作业
    第15周作业
    迟到的第14周作业
  • 原文地址:https://www.cnblogs.com/keye/p/9367347.html
Copyright © 2011-2022 走看看