zoukankan      html  css  js  c++  java
  • Next Permutation

    Problem Statement

    Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

    If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

    The replacement must be in-place, do not allocate extra memory.

    Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.

    1,2,3 → 1,3,2

    3,2,1 → 1,2,3

    1,1,5 → 1,5,1

     

    The hard point of this problem is the definition of next permutation. The description of how to generate next permutation is an algorithm to solve this problem.

    From wikipedia, there's a simple algorithm. But we need to give some remarks to analyze it.

    1. Find the largest index $k$ such that $a[k] < a[k + 1]$. If no such index exists, the permutation is the last permutation.
    2. Find the largest index $l$ greater than $k$ such that $a[k] < a[l]$.
    3. Swap the value of $a[k]$ with that of $a[l]$.
    4. Reverse the sequence from $a[k + 1]$ up to and including the final element $a[n]$.

    The reason why we search from right to left, because that's the first place to decrease the value of permutation.

     

    If we get to the beginning, that means what we deal is the minimum permutation.

     

    Otherwise, if we get the largest $k$ such that $a[k] < a[k+1]$, that means:

    • $a[k+1]$ to $a[n]$ is in decreasing order
    • $a[k]$ is also one element in the range from $a[n]$ to $a[k]$.

    These mean we've got the last permutation when we fix {$a[1], a[2], ..., a[k]$}.

    So the next permutation should begin with {$a[1], a[2], ..., a[k-1], a[k']$}, where $a[k']$ is the next larger element than $a[k]$. After that, we start our permutation from $$a[1], a[2], ..., a[k-1], a[k'], a[k+2], ..., a[n]$$, where $$a[1], a[2], ..., a[k-1], a[k']$$ is in increasing order.

    So, in order to get the next permutation, first we need to find the next larger element than $a[k]$. The method we use is step 2:

    Find the largest index $l$ greater than $k$ such that $a[k] < a[l]$.

    Then, we need to swap the two elements $a[k]$ and $a[l]$. Now:

    1. the next permutation's begining part {$a[1], a[2], ..., a[k]$} has been reached right places.
    2. the new $a[l]$ is just less than $a[l-1]$ and greater than $a[l+1]$. So, {$a[k+1], ..., a[n]$} is in decreasing order.

    So, the last step, we need to reverse the remaining parts, {$a[k+1], ..., a[n]$}, to get the right next permutation.

     


    The complete code is: 

    class Solution {
        void swap(vector<int> &num, int i , int j){
            if (i == j) return;
            
            int tmp = num[i];
            num[i] = num[j];
            num[j] = tmp;
        }
        
        void reverse(vector<int> &num, int start, int end){
            if(start >= end) return;
            
            while(start < end){
                swap(num, start, end);
                start++;
                end--;
            }
        }
        
    public:
        void nextPermutation(vector<int> &num) {
            int n = (int)num.size();
            
            if(1 == n) return;
            
            int p = 0, l = 0;
            for(int i = n - 1; i > 0; --i){
                if(num[i] > num[i-1]){
                    p = i - 1;
                    l = i;
                    
                    while(num[l] > num[p] && l < n) ++l;
                    
                    --l;
                    swap(num, p, l);
                    reverse(num, p+1, n-1);
                    return;
                }
            }
            
            reverse(num, 0, n-1);
        }
    };
    
  • 相关阅读:
    NOIP前咕咕 : BZOJ3172: [Tjoi2013]单词
    BZOJ4350: 括号序列再战猪猪侠【区间DP】
    Codeforces 983B. XOR-pyramid【区间DP】
    POJ1651 Multiplication Puzzle【区间DP】
    LOJ10131. 「一本通 4.4 例 2」暗的连锁【树上差分】
    UOJ22. 【UR #1】外星人【DP】【思维】
    BZOJ5125: [Lydsy1712月赛]小Q的书架【决策单调性优化DP】【BIT】【莫队】【分治】
    Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】
    BZOJ1835: [ZJOI2010]base 基站选址【线段树优化DP】
    Codeforces 165 E. Compatible Numbers【子集前缀和】
  • 原文地址:https://www.cnblogs.com/kid551/p/4113273.html
Copyright © 2011-2022 走看看