zoukankan      html  css  js  c++  java
  • Longest Common Substring

    Problem Statement

    Give two string $s_1$ and $s_2$, find the longest common substring (LCS). E.g: X = [111001], Y = [11011], the longest common substring is [110] with length 3.

    One terse way is to use Dynamic Programming (DP) to analyze the complex problem.

    Instead of dealing with irregular substring, we can first deal with substring indexed by last character.

    Define $dp[i][j] =$ the length of longest common substring of $s_1[0$~$i]$ and $s_2[0$~$j]$ ending with $s1[i]$ and $s2[j]$.

    Then, the maximum LCS length could be the maximum number in array $dp$.

    In order to get the value of $dp[i][j]$, we need to know if $s1[i]$ == $s2[j]$. If it is, then the $dp[i][j] = dp[i-1][j-1]+1$, else it'll be zero. Thus:

    dp[i][j] = (s1[i] == s2[j] ? (dp[i-1][j-1] + 1) : 0);
    

    As we want to know the concrete string with LCM, we just need to do a few modifications.

    When we get a larger $dp[i][j]$ than present maxLength, we'll update the maxLength by $dp[i][j]$.

    if(dp[i][j] > maxLen)
        maxLen = dp[i][j];
    

    At the same time, we can also record the starting index of the new longer substring. For string $s_1$, the beginning index of LCM is the present index $i$ adding 1 minus the length of LCM, i.e.

    if(dp[i][j] > maxLen){
        maxLen = dp[i][j];
        maxIndex = i + 1 - maxLen; 
    }
    

    Finally, we need to initialize state of $dp$. That's simple:

    for(int i = 0; i < s1.length(); ++i)
        dp[i][0] = (s1[i] == s2[0] ? 1 : 0);
    
    for(int j = 0; j < s2.length(); ++j)
        dp[0][j] = (s1[0] == s2[j] ? 1 : 0);
    

    The complete code is:

    void LCM(const string s1, const string s2, int &sIndex, int &length)
    {
        n1 = s1.length();
        n2 = s2.length();
        
        if(0 == n1 || 0 == n2) 
        {
            sIndex = -1;
            length = 0;
            return;
        }
        
        // initialize dp
        vector<vector<int> > dp;
        for(int i = 0; i < n1; ++i){
            vector<int> tmp;
            tmp.push_back((s1[i] == s2[0] ? 1 : 0));  // Initialize the bottom line
            for(int j = 1; j < n2; ++j)
            {
                if(0 == i){
                    tmp.push_back((s1[0] == s2[j] ? 1 : 0));  // Initialize the left line
                }else{
                    tmp.push_back(0);  // Empty the interior area
                }
            }
            
            dp.push_back(tmp);
        }
        
        // compute max length and index
        length = 0;
        for(int i = 1; i < n1; ++i){
            for(int j = 1; j < n2; ++j){
                if(st1[i] == st2[j])
                    dp[i][j] = dp[i-1][j-1] + 1;
                    
                if(dp[i][j] > length){
                    length = dp[i][j];
                    sIndex = i + 1 - length;
                }
            }
        }    
    }
    
  • 相关阅读:
    ELK日志分析系统
    amoeba_mysql 读写分离
    while for if ---语句和编写计划任务
    Shell awk文本处理,shell脚本编写
    shell---正则表达式和文本处理器
    linux---网络相关配置,ssh服务,bash命令及优先级,元字符
    linux---nginx服务nfs服务nginx反向代理三台web
    linux---进程,(rpm,yum)软件包
    linux---tar命令,vim编辑器,磁盘分区,挂载,链接
    linux命令权限
  • 原文地址:https://www.cnblogs.com/kid551/p/4321392.html
Copyright © 2011-2022 走看看