zoukankan      html  css  js  c++  java
  • Markdown 数学公式输入

    (a+b)

    [a+b ]

    $a+b$    //左边显示
    $$a+b$$  //居中显示
    

    (vec A)

    $vec A$
    

    (x^{y^z} = (1+e^x)^{-2xy^w})

    $x^{y^z} = (1+e^x)^{-2xy^w}$
    

    (f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5})

    $f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5}$
    

    ((frac {x} {y})^2 , left(frac {x} {y} ight)^2)

    $(frac {x} {y})^2 , left(frac {x} {y} 
    ight)^2$
    

    (left. frac{du}{dx} ight| _{x=0})

    $left. frac{du}{dx} 
    ight| _{x=0}$
    

    (frac{1}{2x+1} , {{1} over {2x+1}})

    $frac{1}{2x+1} , {{1} over {2x+1}}$
    

    (sqrt[3]{9}, sqrt{16})

    $sqrt[3]{9}, sqrt{16}$
    

    (f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2)

    $f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2$
    

    (vec a cdot vec b = 0)

    $vec a cdot vec b = 0$
    

    (int_0^1x^2dx)

    $int_0^1x^2dx$
    

    (lim_{n ightarrow+infty}frac{1}{n(n+1)})

    $lim_{n
    ightarrow+infty}frac{1}{n(n+1)}$
    

    (sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}})

    $sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}}$
    

    (alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta heta Theta vartheta iota kappa lambda Lambda mu u xi Xi pi Pi varpi ho varrho sigma Sigma varsigma au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega)

    $alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta 	heta Theta vartheta iota kappa lambda Lambda mu 
    u xi Xi pi Pi varpi 
    ho varrho sigma Sigma varsigma 	au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega$
    
    显示 命令 显示 命令
    (alpha) alpha (eta) eta
    (gamma) gamma (delta) delta
    (epsilon) epsilon (zeta) zeta
    (eta) eta ( heta) heta
    (iota) iota (kappa) kappa
    (lambda) lambda (mu) mu
    ( u) u (xi) xi
    (pi) pi ( ho) ho
    (sigma) sigma ( au) au
    (upsilon) upsilon (phi) phi
    (chi) chi (psi) psi
    (omega) omega

    (# $ \%&\_{})

    $# $ \%&\_{}$
    

    (pm imes div mid)

    $pm 	imes div mid$
    

    (cdot circ ast igodot igotimes leq geq eq approx equiv sum prod coprod)

    $cdot circ ast igodot igotimes leq geq 
    eq approx equiv sum prod coprod$
    

    (emptyset in otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup)

    $emptyset in 
    otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup$
    

    (log lg ln)

    $log lg ln$
    

    (ot angle 30^circ sin cos an cot sec csc)

    $ot angle 30^circ sin cos 	an cot sec csc$
    

    (y{prime}x int iint iiint oint lim infty abla)

    $y{prime}x int iint iiint oint lim infty 
    abla$
    

    (ecause herefore forall exists)

    $ecause 	herefore forall exists$
    

    (uparrow downarrow leftarrow ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow)

    $uparrow downarrow leftarrow 
    ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow$
    

    (overline{a+b+c+d} underline{a+b+c+d} overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0} hat{y} check{y} reve{y})

    $overline{a+b+c+d}
    underline{a+b+c+d}
    overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0}
    hat{y} check{y} reve{y}$
    

    ( egin{matrix} 1&0&0\ 0&1&0\ 0&0&1\ end{matrix} )

    $
    egin{matrix}
    1&0&0\
    0&1&0\
    0&0&1\
    end{matrix}
    $
    

    在起始、结束标记处用下列词替换 matrix
    pmatrix :小括号边框
    bmatrix :中括号边框
    Bmatrix :大括号边框
    vmatrix :单竖线边框
    Vmatrix :双竖线边框

    [egin{bmatrix} {a_{11}}&{a_{12}}&{cdots}&{a_{1n}}\ {a_{21}}&{a_{22}}&{cdots}&{a_{2n}}\ {vdots}&{vdots}&{ddots}&{vdots}\ {a_{m1}}&{a_{m2}}&{cdots}&{a_{mn}}\ end{bmatrix} ]

    $$
    egin{bmatrix}
    {a_{11}}&{a_{12}}&{cdots}&{a_{1n}}\
    {a_{21}}&{a_{22}}&{cdots}&{a_{2n}}\
    {vdots}&{vdots}&{ddots}&{vdots}\
    {a_{m1}}&{a_{m2}}&{cdots}&{a_{mn}}\
    end{bmatrix}
    $$
    

    [egin{array}{c|lll} {↓}&{a}&{b}&{c}\ hline {R_1}&{c}&{b}&{a}\ {R_2}&{b}&{c}&{c}\ end{array} ]

    $$
    egin{array}{c|lll}
    {↓}&{a}&{b}&{c}\
    hline
    {R_1}&{c}&{b}&{a}\
    {R_2}&{b}&{c}&{c}\
    end{array}
    $$
    

    [egin{cases} a_1x+b_1y+c_1z=d_1\ a_2x+b_2y+c_2z=d_2\ a_3x+b_3y+c_3z=d_3\ end{cases} ]

    $$
    egin{cases}
    a_1x+b_1y+c_1z=d_1\
    a_2x+b_2y+c_2z=d_2\
    a_3x+b_3y+c_3z=d_3\
    end{cases}
    $$
    

    https://www.jianshu.com/p/a0aa94ef8ab2
    https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
    https://blog.csdn.net/xingxinmanong/article/details/78528791

  • 相关阅读:
    Codeforces 1265A Beautiful String
    1039 Course List for Student (25)
    1038 Recover the Smallest Number (30)
    1037 Magic Coupon (25)
    1024 Palindromic Number (25)
    1051 Pop Sequence (25)
    1019 General Palindromic Number (20)
    1031 Hello World for U (20)
    1012 The Best Rank (25)
    1011 World Cup Betting (20)
  • 原文地址:https://www.cnblogs.com/kingBook/p/12942750.html
Copyright © 2011-2022 走看看