zoukankan      html  css  js  c++  java
  • Markdown 数学公式输入

    (a+b)

    [a+b ]

    $a+b$    //左边显示
    $$a+b$$  //居中显示
    

    (vec A)

    $vec A$
    

    (x^{y^z} = (1+e^x)^{-2xy^w})

    $x^{y^z} = (1+e^x)^{-2xy^w}$
    

    (f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5})

    $f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5}$
    

    ((frac {x} {y})^2 , left(frac {x} {y} ight)^2)

    $(frac {x} {y})^2 , left(frac {x} {y} 
    ight)^2$
    

    (left. frac{du}{dx} ight| _{x=0})

    $left. frac{du}{dx} 
    ight| _{x=0}$
    

    (frac{1}{2x+1} , {{1} over {2x+1}})

    $frac{1}{2x+1} , {{1} over {2x+1}}$
    

    (sqrt[3]{9}, sqrt{16})

    $sqrt[3]{9}, sqrt{16}$
    

    (f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2)

    $f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2$
    

    (vec a cdot vec b = 0)

    $vec a cdot vec b = 0$
    

    (int_0^1x^2dx)

    $int_0^1x^2dx$
    

    (lim_{n ightarrow+infty}frac{1}{n(n+1)})

    $lim_{n
    ightarrow+infty}frac{1}{n(n+1)}$
    

    (sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}})

    $sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}}$
    

    (alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta heta Theta vartheta iota kappa lambda Lambda mu u xi Xi pi Pi varpi ho varrho sigma Sigma varsigma au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega)

    $alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta 	heta Theta vartheta iota kappa lambda Lambda mu 
    u xi Xi pi Pi varpi 
    ho varrho sigma Sigma varsigma 	au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega$
    
    显示 命令 显示 命令
    (alpha) alpha (eta) eta
    (gamma) gamma (delta) delta
    (epsilon) epsilon (zeta) zeta
    (eta) eta ( heta) heta
    (iota) iota (kappa) kappa
    (lambda) lambda (mu) mu
    ( u) u (xi) xi
    (pi) pi ( ho) ho
    (sigma) sigma ( au) au
    (upsilon) upsilon (phi) phi
    (chi) chi (psi) psi
    (omega) omega

    (# $ \%&\_{})

    $# $ \%&\_{}$
    

    (pm imes div mid)

    $pm 	imes div mid$
    

    (cdot circ ast igodot igotimes leq geq eq approx equiv sum prod coprod)

    $cdot circ ast igodot igotimes leq geq 
    eq approx equiv sum prod coprod$
    

    (emptyset in otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup)

    $emptyset in 
    otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup$
    

    (log lg ln)

    $log lg ln$
    

    (ot angle 30^circ sin cos an cot sec csc)

    $ot angle 30^circ sin cos 	an cot sec csc$
    

    (y{prime}x int iint iiint oint lim infty abla)

    $y{prime}x int iint iiint oint lim infty 
    abla$
    

    (ecause herefore forall exists)

    $ecause 	herefore forall exists$
    

    (uparrow downarrow leftarrow ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow)

    $uparrow downarrow leftarrow 
    ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow$
    

    (overline{a+b+c+d} underline{a+b+c+d} overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0} hat{y} check{y} reve{y})

    $overline{a+b+c+d}
    underline{a+b+c+d}
    overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0}
    hat{y} check{y} reve{y}$
    

    ( egin{matrix} 1&0&0\ 0&1&0\ 0&0&1\ end{matrix} )

    $
    egin{matrix}
    1&0&0\
    0&1&0\
    0&0&1\
    end{matrix}
    $
    

    在起始、结束标记处用下列词替换 matrix
    pmatrix :小括号边框
    bmatrix :中括号边框
    Bmatrix :大括号边框
    vmatrix :单竖线边框
    Vmatrix :双竖线边框

    [egin{bmatrix} {a_{11}}&{a_{12}}&{cdots}&{a_{1n}}\ {a_{21}}&{a_{22}}&{cdots}&{a_{2n}}\ {vdots}&{vdots}&{ddots}&{vdots}\ {a_{m1}}&{a_{m2}}&{cdots}&{a_{mn}}\ end{bmatrix} ]

    $$
    egin{bmatrix}
    {a_{11}}&{a_{12}}&{cdots}&{a_{1n}}\
    {a_{21}}&{a_{22}}&{cdots}&{a_{2n}}\
    {vdots}&{vdots}&{ddots}&{vdots}\
    {a_{m1}}&{a_{m2}}&{cdots}&{a_{mn}}\
    end{bmatrix}
    $$
    

    [egin{array}{c|lll} {↓}&{a}&{b}&{c}\ hline {R_1}&{c}&{b}&{a}\ {R_2}&{b}&{c}&{c}\ end{array} ]

    $$
    egin{array}{c|lll}
    {↓}&{a}&{b}&{c}\
    hline
    {R_1}&{c}&{b}&{a}\
    {R_2}&{b}&{c}&{c}\
    end{array}
    $$
    

    [egin{cases} a_1x+b_1y+c_1z=d_1\ a_2x+b_2y+c_2z=d_2\ a_3x+b_3y+c_3z=d_3\ end{cases} ]

    $$
    egin{cases}
    a_1x+b_1y+c_1z=d_1\
    a_2x+b_2y+c_2z=d_2\
    a_3x+b_3y+c_3z=d_3\
    end{cases}
    $$
    

    https://www.jianshu.com/p/a0aa94ef8ab2
    https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
    https://blog.csdn.net/xingxinmanong/article/details/78528791

  • 相关阅读:
    应用网络电视机顶盒通过宽带网络代替数字电视
    该公众号暂时无法提供服务请稍后再试
    有点坑爹的GDALComputeRasterMinMax函数
    微信硬件平台框架说明及接入流程
    微信硬件设备接入接口协议
    微信思维
    百度SEO建议
    公众平台调整SSL安全策略,请开发者注意升级
    微信支付开发教程
    .net文件分片上传,断点续传
  • 原文地址:https://www.cnblogs.com/kingBook/p/12942750.html
Copyright © 2011-2022 走看看