第二章:二分法
目录:
414:
public int divide(int dividend, int divisor) { if (divisor == 0) { return dividend >= 0? Integer.MAX_VALUE : Integer.MIN_VALUE; } if (dividend == 0) { return 0; } if (dividend == Integer.MIN_VALUE && divisor == -1) { return Integer.MAX_VALUE; } boolean isNegative = (dividend < 0 && divisor > 0) || (dividend > 0 && divisor < 0); long a = Math.abs((long)dividend); long b = Math.abs((long)divisor); int result = 0; while(a >= b){ int shift = 0; while(a >= (b << shift)){ shift++; } a -= b << (shift - 1); result += 1 << (shift - 1); } return isNegative? -result: result; }
617:
public double maxAverage(int[] nums, int k) { double l = Integer.MAX_VALUE, r = Integer.MIN_VALUE; for (int i = 0; i < nums.length; ++i) { if (nums[i] < l) l = nums[i]; if (nums[i] > r) r = nums[i]; } while (r - l >= 1e-6) { double mid = (l + r) / 2.0; if (check_valid(nums, mid, k)) { l = mid; } else { r = mid; } } return l; } private boolean check_valid(int nums[], double mid, int k) { int n = nums.length; double min_pre = 0; double[] sum = new double[n + 1]; sum[0] = 0; for (int i = 1; i <= n; ++i) { sum[i] = sum[i - 1] + nums[i - 1] - mid; if (i >= k && sum[i] - min_pre >= 0) { return true; } if (i >= k) min_pre = Math.min(min_pre, sum[i - k + 1]); } return false; }
586:
二分法:
public double sqrt(double x) { double left = 0.0; double right = x; double eps = 1e-12; if(right < 1.0) { right = 1.0; } while(right - left > eps) { // 二分浮点数 和二分整数不同 // 一般都有一个精度的要求 譬如这题就是要求小数点后八位 // 也就是只要我们二分的结果达到了这个精度的要求就可以 // 所以 需要让 right 和 left 小于一个我们事先设定好的精度值 eps // 一般eps的设定1e-8,因为这题的要求是到1e-8,所以我把精度调到了1e-12 // 最后 选择 left 或 right 作为一个结果即可 double mid = (right + left) / 2; if(mid * mid < x) { left = mid; } else { right = mid; } } return left; }
牛顿法:
public double sqrt(double x) { // Write your code here double res = 1.0; double eps = 1e-12; while(Math.abs(res * res - x) > eps) { res = (res + x / res) / 2; } return res; }
160:
一个循环:
public int findMin(int[] nums) { // 这道题目在面试中不会让写完整的程序 // 只需要知道最坏情况下 [1,1,1....,1] 里有一个0 // 这种情况使得时间复杂度必须是 O(n) // 因此写一个for循环就好了。 // 如果你觉得,不是每个情况都是最坏情况,你想用二分法解决不是最坏情况的情况,那你就写一个二分吧。 // 反正面试考的不是你在这个题上会不会用二分法。这个题的考点是你想不想得到最坏情况。 int min = nums[0]; for (int i = 1; i < nums.length; i++) { if (nums[i] < min) min = nums[i]; } return min; }
二分:
public int findMin(int[] nums) { if (nums == null || nums.length == 0) { return -1; } int start = 0, end = nums.length - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (nums[mid] == nums[end]) { // if mid equals to end, that means it's fine to remove end // the smallest element won't be removed end--; } else if (nums[mid] < nums[end]) { end = mid; // of course you can merge == & < } else { start = mid; // or start = mid + 1 } } if (nums[start] <= nums[end]) { return nums[start]; } return nums[end]; }
63:
// 这个问题在面试中不会让实现完整程序 // 只需要举出能够最坏情况的数据是 [1,1,1,1... 1] 里有一个0即可。 // 在这种情况下是无法使用二分法的,复杂度是O(n) // 因此写个for循环最坏也是O(n),那就写个for循环就好了 // 如果你觉得,不是每个情况都是最坏情况,你想用二分法解决不是最坏情况的情况,那你就写一个二分吧。 // 反正面试考的不是你在这个题上会不会用二分法。这个题的考点是你想不想得到最坏情况。 public boolean search(int[] A, int target) { for (int i = 0; i < A.length; i ++) { if (A[i] == target) { return true; } } return false; }
第三章:二叉树和分治法
目录:
88:
// 在root为根的二叉树中找A,B的LCA: // 如果找到了就返回这个LCA // 如果只碰到A,就返回A // 如果只碰到B,就返回B // 如果都没有,就返回null public TreeNode lowestCommonAncestor(TreeNode root, TreeNode node1, TreeNode node2) { if (root == null || root == node1 || root == node2) { return root; } // Divide TreeNode left = lowestCommonAncestor(root.left, node1, node2); TreeNode right = lowestCommonAncestor(root.right, node1, node2); // Conquer if (left != null && right != null) { return root; } if (left != null) { return left; } if (right != null) { return right; } return null; }
474:
public ParentTreeNode lowestCommonAncestorII(ParentTreeNode root, ParentTreeNode A, ParentTreeNode B) { ArrayList<ParentTreeNode> pathA = getPath2Root(A); ArrayList<ParentTreeNode> pathB = getPath2Root(B); int indexA = pathA.size() - 1; int indexB = pathB.size() - 1; ParentTreeNode lowestAncestor = null; while (indexA >= 0 && indexB >= 0) { if (pathA.get(indexA) != pathB.get(indexB)) { break; } lowestAncestor = pathA.get(indexA); indexA--; indexB--; } return lowestAncestor; } private ArrayList<ParentTreeNode> getPath2Root(ParentTreeNode node) { ArrayList<ParentTreeNode> path = new ArrayList<>(); while (node != null) { path.add(node); node = node.parent; } return path; }
578:
class ResultType { public boolean a_exist, b_exist; public TreeNode node; ResultType(boolean a, boolean b, TreeNode n) { a_exist = a; b_exist = b; node = n; } } public class Solution { /** * @param root The root of the binary tree. * @param A and B two nodes * @return: Return the LCA of the two nodes. */ public TreeNode lowestCommonAncestor3(TreeNode root, TreeNode A, TreeNode B) { // write your code here ResultType rt = helper(root, A, B); if (rt.a_exist && rt.b_exist) return rt.node; else return null; } public ResultType helper(TreeNode root, TreeNode A, TreeNode B) { if (root == null) return new ResultType(false, false, null); ResultType left_rt = helper(root.left, A, B); ResultType right_rt = helper(root.right, A, B); boolean a_exist = left_rt.a_exist || right_rt.a_exist || root == A; boolean b_exist = left_rt.b_exist || right_rt.b_exist || root == B; if (root == A || root == B) return new ResultType(a_exist, b_exist, root); if (left_rt.node != null && right_rt.node != null) return new ResultType(a_exist, b_exist, root); if (left_rt.node != null) return new ResultType(a_exist, b_exist, left_rt.node); if (right_rt.node != null) return new ResultType(a_exist, b_exist, right_rt.node); return new ResultType(a_exist, b_exist, null); } }
95:
private int lastVal = Integer.MIN_VALUE; private boolean firstNode = true; public boolean isValidBST(TreeNode root) { if (root == null) { return true; } if (!isValidBST(root.left)) { return false; } if (!firstNode && lastVal >= root.val) { return false; } firstNode = false; lastVal = root.val; if (!isValidBST(root.right)) { return false; } return true; }
155:
public int minDepth(TreeNode root) { if (root == null) { return 0; } return getMin(root); } public int getMin(TreeNode root){ if (root == null) { return Integer.MAX_VALUE; } if (root.left == null && root.right == null) { return 1; } return Math.min(getMin(root.left), getMin(root.right)) + 1; }
246:
public List<List<Integer>> binaryTreePathSum2(TreeNode root, int target) { // Write your code here List<List<Integer>> results = new ArrayList<List<Integer>>(); ArrayList<Integer> buffer = new ArrayList<Integer>(); if (root == null) return results; findSum(root, target, buffer, 0, results); return results; } public void findSum(TreeNode head, int sum, ArrayList<Integer> buffer, int level, List<List<Integer>> results) { if (head == null) return; int tmp = sum; buffer.add(head.val); for (int i = level;i >= 0; i--) { tmp -= buffer.get(i); if (tmp == 0) { List<Integer> temp = new ArrayList<Integer>(); for (int j = i; j <= level; ++j) temp.add(buffer.get(j)); results.add(temp); } } findSum(head.left, sum, buffer, level + 1, results); findSum(head.right, sum, buffer, level + 1, results); buffer.remove(buffer.size() - 1); }
public List<List<Integer>> binaryTreePathSum3(ParentTreeNode root, int target) { // Write your code here List<List<Integer>> results = new ArrayList<List<Integer>>(); dfs(root, target, results); return results; } public void dfs(ParentTreeNode root, int target, List<List<Integer>> results) { if (root == null) return; List<Integer> path = new ArrayList<Integer>(); findSum(root, null, target, path, results); dfs(root.left, target, results); dfs(root.right, target, results); } public void findSum(ParentTreeNode root, ParentTreeNode father, int target, List<Integer> path, List<List<Integer>> results) { path.add(root.val); target -= root.val; if (target == 0) { ArrayList<Integer> tmp = new ArrayList<Integer>(); Collections.addAll(tmp, new Integer[path.size()]); Collections.copy(tmp, path); results.add(tmp); } if (root.parent != null && root.parent != father) findSum(root.parent, root, target, path, results); if (root.left != null && root.left != father) findSum(root.left, root, target, path, results); if (root.right != null && root.right != father) findSum(root.right, root, target, path, results); path.remove(path.size() - 1); }
475:
public int maxPathSum2(TreeNode root) { if (root == null) { return Integer.MIN_VALUE; } int left = maxPathSum2(root.left); int right = maxPathSum2(root.right); return root.val + Math.max(0, Math.max(left, right)); }
614:
class ResultType { public int max_length, max_down, max_up; ResultType(int len, int down, int up) { max_length = len; max_down = down; max_up = up; } } public class Solution { /** * @param root the root of binary tree * @return the length of the longest consecutive sequence path */ public int longestConsecutive2(TreeNode root) { // Write your code here return helper(root).max_length; } ResultType helper(TreeNode root) { if (root == null) { return new ResultType(0, 0, 0); } ResultType left = helper(root.left); ResultType right = helper(root.right); int down = 0, up = 0; if (root.left != null && root.left.val + 1 == root.val) down = Math.max(down, left.max_down + 1); if (root.left != null && root.left.val - 1 == root.val) up = Math.max(up, left.max_up + 1); if (root.right != null && root.right.val + 1 == root.val) down = Math.max(down, right.max_down + 1); if (root.right != null && root.right.val - 1 == root.val) up = Math.max(up, right.max_up + 1); int len = down + 1 + up; len = Math.max(len, Math.max(left.max_length, right.max_length)); return new ResultType(len, down, up); } }
619:
class ResultType { public int max_len, max_down, max_up; ResultType(int len, int down, int up) { max_len = len; max_down = down; max_up = up; } } public class Solution { /** * @param root the root of k-ary tree * @return the length of the longest consecutive sequence path */ public int longestConsecutive3(MultiTreeNode root) { // Write your code here return helper(root).max_len; } ResultType helper(MultiTreeNode root) { if (root == null) { return new ResultType(0, 0, 0); } int down = 0, up = 0, max_len = 1; for (MultiTreeNode node : root.children) { ResultType type = helper(node); if (node.val + 1 == root.val) down = Math.max(down, type.max_down + 1); if (node.val - 1 == root.val) up = Math.max(up, type.max_up + 1); max_len = Math.max(max_len, type.max_len); } max_len = Math.max(down + 1 + up, max_len); return new ResultType(max_len, down, up); } }
448:
public class Solution { public TreeNode inorderSuccessor(TreeNode root, TreeNode p) { TreeNode successor = null; while (root != null && root != p) { if (root.val > p.val) { successor = root; root = root.left; } else { root = root.right; } } if (root == null) { return null; } if (root.right == null) { return successor; } root = root.right; while (root.left != null) { root = root.left; } return root; } }
更短:
public class Solution { public TreeNode inorderSuccessor(TreeNode root, TreeNode p) { // write your code here if (root == null || p == null) { return null; } if (root.val <= p.val) { return inorderSuccessor(root.right, p); } else { TreeNode left = inorderSuccessor(root.left, p); return (left != null) ? left : root; } } }
378:
/** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } * Definition for Doubly-ListNode. * public class DoublyListNode { * int val; * DoublyListNode next, prev; * DoublyListNode(int val) { * this.val = val; * this.next = this.prev = null; * } * } */ class ResultType { DoublyListNode first, last; public ResultType(DoublyListNode first, DoublyListNode last) { this.first = first; this.last = last; } } public class Solution { /** * @param root: The root of tree * @return: the head of doubly list node */ public DoublyListNode bstToDoublyList(TreeNode root) { if (root == null) { return null; } ResultType result = helper(root); return result.first; } public ResultType helper(TreeNode root) { if (root == null) { return null; } ResultType left = helper(root.left); ResultType right = helper(root.right); DoublyListNode node = new DoublyListNode(root.val); ResultType result = new ResultType(null, null); if (left == null) { result.first = node; } else { result.first = left.first; left.last.next = node; node.prev = left.last; } if (right == null) { result.last = node; } else { result.last = right.last; right.first.prev = node; node.next = right.first; } return result; } }
第四章:宽度优先搜索
目录:
624:
public int minLength(String s, Set<String> dict) { // Write your code here Queue<String> que = new LinkedList<String>(); Set<String> hash = new HashSet<String>(); int min = s.length(); que.offer(s); hash.add(s); while (!que.isEmpty()) { s = que.poll(); for (String sub : dict) { int found = s.indexOf(sub); while (found != -1) { String new_s = s.substring(0, found) + s.substring(found + sub.length(), s.length()); if (!hash.contains(new_s)) { if (new_s.length() < min) min = new_s.length(); que.offer(new_s); hash.add(new_s); } found = s.indexOf(sub, found + 1); } } } return min; }
605:
public boolean sequenceReconstruction(int[] org, int[][] seqs) { // Write your code here Map<Integer, Set<Integer>> map = new HashMap<Integer, Set<Integer>>(); Map<Integer, Integer> indegree = new HashMap<Integer, Integer>(); for (int num : org) { map.put(num, new HashSet<Integer>()); indegree.put(num, 0); } int n = org.length; int count = 0; for (int[] seq : seqs) { count += seq.length; if (seq.length >= 1 && (seq[0] <= 0 || seq[0] > n)) return false; for (int i = 1; i < seq.length; i++) { if (seq[i] <= 0 || seq[i] > n) return false; if (map.get(seq[i - 1]).add(seq[i])) indegree.put(seq[i], indegree.get(seq[i]) + 1); } } // case: [1], [] if (count < n) return false; Queue<Integer> q = new ArrayDeque<Integer>(); for (int key : indegree.keySet()) if (indegree.get(key) == 0) q.add(key); int cnt = 0; while (q.size() == 1) { int ele = q.poll(); for (int next : map.get(ele)) { indegree.put(next, indegree.get(next) - 1); if (indegree.get(next) == 0) q.add(next); } if (ele != org[cnt]) { return false; } cnt++; } return cnt == org.length; }
531:
public int sixDegrees(List<UndirectedGraphNode> graph, UndirectedGraphNode s, UndirectedGraphNode t) { // Write your code here if (s == t) return 0; Map<UndirectedGraphNode, Integer> visited = new HashMap<UndirectedGraphNode, Integer>(); Queue<UndirectedGraphNode> queue = new LinkedList<UndirectedGraphNode>(); queue.offer(s); visited.put(s, 0); while (!queue.isEmpty()) { UndirectedGraphNode node = queue.poll(); int step = visited.get(node); for (int i = 0; i < node.neighbors.size(); i++) { if (visited.containsKey(node.neighbors.get(i))) { continue; } visited.put(node.neighbors.get(i), step + 1); queue.offer(node.neighbors.get(i)); if (node.neighbors.get(i) == t) { return step + 1; } } } return -1; }
120:
public class Solution { public int ladderLength(String start, String end, Set<String> dict) { if (dict == null) { return 0; } if (start.equals(end)) { return 1; } dict.add(start); dict.add(end); HashSet<String> hash = new HashSet<String>(); Queue<String> queue = new LinkedList<String>(); queue.offer(start); hash.add(start); int length = 1; while(!queue.isEmpty()) { length++; int size = queue.size(); for (int i = 0; i < size; i++) { String word = queue.poll(); for (String nextWord: getNextWords(word, dict)) { if (hash.contains(nextWord)) { continue; } if (nextWord.equals(end)) { return length; } hash.add(nextWord); queue.offer(nextWord); } } } return 0; } // replace character of a string at given index to a given character // return a new string private String replace(String s, int index, char c) { char[] chars = s.toCharArray(); chars[index] = c; return new String(chars); } // get connections with given word. // for example, given word = 'hot', dict = {'hot', 'hit', 'hog'} // it will return ['hit', 'hog'] private ArrayList<String> getNextWords(String word, Set<String> dict) { ArrayList<String> nextWords = new ArrayList<String>(); for (char c = 'a'; c <= 'z'; c++) { for (int i = 0; i < word.length(); i++) { if (c == word.charAt(i)) { continue; } String nextWord = replace(word, i, c); if (dict.contains(nextWord)) { nextWords.add(nextWord); } } } return nextWords; } }
615:
public boolean canFinish(int numCourses, int[][] prerequisites) { // Write your code here List[] edges = new ArrayList[numCourses]; int[] degree = new int[numCourses]; for (int i = 0;i < numCourses; i++) edges[i] = new ArrayList<Integer>(); for (int i = 0; i < prerequisites.length; i++) { degree[prerequisites[i][0]] ++ ; edges[prerequisites[i][1]].add(prerequisites[i][0]); } Queue queue = new LinkedList(); for(int i = 0; i < degree.length; i++){ if (degree[i] == 0) { queue.add(i); } } int count = 0; while(!queue.isEmpty()){ int course = (int)queue.poll(); count ++; int n = edges[course].size(); for(int i = 0; i < n; i++){ int pointer = (int)edges[course].get(i); degree[pointer]--; if (degree[pointer] == 0) { queue.add(pointer); } } } return count == numCourses; }
431:
/** * Definition for Undirected graph. * class UndirectedGraphNode { * int label; * ArrayList<UndirectedGraphNode> neighbors; * UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); } * }; */ public class Solution { /** * @param nodes a array of Undirected graph node * @return a connected set of a Undirected graph */ public List<List<Integer>> connectedSet(List<UndirectedGraphNode> nodes) { // Write your code here int m = nodes.size(); Map<UndirectedGraphNode, Boolean> visited = new HashMap<>(); for (UndirectedGraphNode node : nodes){ visited.put(node, false); } List<List<Integer>> result = new ArrayList<>(); for (UndirectedGraphNode node : nodes){ if (visited.get(node) == false){ bfs(node, visited, result); } } return result; } public void bfs(UndirectedGraphNode node, Map<UndirectedGraphNode, Boolean> visited, List<List<Integer>> result){ List<Integer>row = new ArrayList<>(); Queue<UndirectedGraphNode> queue = new LinkedList<>(); visited.put(node, true); queue.offer(node); while (!queue.isEmpty()){ UndirectedGraphNode u = queue.poll(); row.add(u.label); for (UndirectedGraphNode v : u.neighbors){ if (visited.get(v) == false){ visited.put(v, true); queue.offer(v); } } } Collections.sort(row); result.add(row); } }
70:
public List<List<Integer>> levelOrderBottom(TreeNode root) { List<List<Integer>> result = new ArrayList<>(); if (root == null) { return result; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.offer(root); while (!queue.isEmpty()) { int size = queue.size(); List<Integer> level = new ArrayList<>(); for (int i = 0; i < size; i++) { TreeNode head = queue.poll(); level.add(head.val); if (head.left != null) { queue.offer(head.left); } if (head.right != null) { queue.offer(head.right); } } result.add(level); } Collections.reverse(result); return result; }
71:
public List<List<Integer>> zigzagLevelOrder(TreeNode root) { List<List<Integer>> result = new ArrayList<List<Integer>>(); if (root == null) { return result; } Stack<TreeNode> currLevel = new Stack<TreeNode>(); Stack<TreeNode> nextLevel = new Stack<TreeNode>(); Stack<TreeNode> tmp; currLevel.push(root); boolean normalOrder = true; while (!currLevel.isEmpty()) { ArrayList<Integer> currLevelResult = new ArrayList<Integer>(); while (!currLevel.isEmpty()) { TreeNode node = currLevel.pop(); currLevelResult.add(node.val); if (normalOrder) { if (node.left != null) { nextLevel.push(node.left); } if (node.right != null) { nextLevel.push(node.right); } } else { if (node.right != null) { nextLevel.push(node.right); } if (node.left != null) { nextLevel.push(node.left); } } } result.add(currLevelResult); tmp = currLevel; currLevel = nextLevel; nextLevel = tmp; normalOrder = !normalOrder; } return result; }
434:
/** * Definition for a point. * class Point { * int x; * int y; * Point() { x = 0; y = 0; } * Point(int a, int b) { x = a; y = b; } * } */ public class Solution { /** * @param n an integer * @param m an integer * @param operators an array of point * @return an integer array */ int converttoId(int x, int y, int m){ return x*m + y; } class UnionFind{ HashMap<Integer, Integer> father = new HashMap<Integer, Integer>(); UnionFind(int n, int m){ for(int i = 0 ; i < n; i++) { for(int j = 0 ; j < m; j++) { int id = converttoId(i,j,m); father.put(id, id); } } } int compressed_find(int x){ int parent = father.get(x); while(parent!=father.get(parent)) { parent = father.get(parent); } int temp = -1; int fa = x; while(fa!=father.get(fa)) { temp = father.get(fa); father.put(fa, parent) ; fa = temp; } return parent; } void union(int x, int y){ int fa_x = compressed_find(x); int fa_y = compressed_find(y); if(fa_x != fa_y) father.put(fa_x, fa_y); } } public List<Integer> numIslands2(int n, int m, Point[] operators) { // Write your code here List<Integer> ans = new ArrayList<Integer>(); if(operators == null) { return ans; } int []dx = {0,-1, 0, 1}; int []dy = {1, 0, -1, 0}; int [][]island = new int[n][m]; UnionFind uf = new UnionFind(n, m); int count = 0; for(int i = 0; i < operators.length; i++) { int x = operators[i].x; int y = operators[i].y; if(island[x][y] != 1) { count ++; island[x][y] = 1; int id = converttoId(x,y , m); for(int j = 0 ; j < 4; j++) { int nx = x + dx[j]; int ny = y + dy[j]; if(0 <= nx && nx < n && 0 <= ny && ny < m && island[nx][ny] == 1) { int nid = converttoId(nx, ny, m); int fa = uf.compressed_find(id); int nfa = uf.compressed_find(nid); if(fa != nfa) { count--; uf.union(id, nid); } } } } ans.add(count); } return ans; } }
574:
public int shortestDistance(int[][] grid) { // Write your code here int n = grid.length; if (n == 0) return -1; int m = grid[0].length; if (m == 0) return -1; List<Integer> sumx = new ArrayList<Integer>(); List<Integer> sumy = new ArrayList<Integer>(); List<Integer> x = new ArrayList<Integer>(); List<Integer> y = new ArrayList<Integer>(); int result = Integer.MAX_VALUE; for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (grid[i][j] == 1) { x.add(i); y.add(j); } Collections.sort(x); Collections.sort(y); int total = x.size(); sumx.add(0); sumy.add(0); for (int i = 1; i <= total; ++i) { sumx.add(sumx.get(i-1) + x.get(i-1)); sumy.add(sumy.get(i-1) + y.get(i-1)); } for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) if (grid[i][j] == 0) { int cost_x = get_cost(x, sumx, i, total); int cost_y = get_cost(y, sumy, j, total); if (cost_x + cost_y < result) result = cost_x + cost_y; } return result; } public int get_cost(List<Integer> x, List<Integer> sum, int pos, int n) { if (n == 0) return 0; if (x.get(0) > pos) return sum.get(n) - pos * n; int l = 0, r = n - 1; while (l + 1 < r) { int mid = l + (r - l) / 2; if (x.get(mid) <= pos) l = mid; else r = mid - 1; } int index = 0; if (x.get(r) <= pos) index = r; else index = l; return sum.get(n) - sum.get(index + 1) - pos * (n - index - 1) + (index + 1) * pos - sum.get(index + 1); }
public int shortestDistance(int[][] grid) { // Write your code here int row = grid.length, column = grid[0].length; if(row == 0 || column == 0 || !haveZero(grid,row,column)) { return -1; } int[] rowSum = new int[row]; int[] columnSum = new int[column]; for(int i = 0; i < row; i++) for(int j = 0; j < column; j++) if(grid[i][j] == 1) { rowSum[i]++; columnSum[j]++; } int[] ansRow = new int[row]; int[] ansColumn = new int[column]; getSumDistance(rowSum,row,ansRow); getSumDistance(columnSum,column,ansColumn); int ans = Integer.MAX_VALUE; for(int i = 0; i < row; i++) for(int j = 0; j < column; j++) if(grid[i][j] == 0 && ans > ansRow[i] + ansColumn[j]) { ans = ansRow[i] + ansColumn[j]; } return ans; } void getSumDistance(int[] a,int n,int[] ans) { int[] prefixSum1 = new int[n]; int[] prefixSum2 = new int[n]; /* 第一阶段,处理前缀。 prefixSum1记录数组 a 的前缀和,即:prefixSum1[i]=a[0]+a[1]+..+a[i]. prefixSum2记录数组 prefixSum1 前缀和,prefixSum2即为前 i 个点到第 i 个点的代价和。 */ prefixSum1[0] = a[0]; for(int i = 1; i < n; i++) { prefixSum1[i] = prefixSum1[i - 1] + a[i]; } prefixSum2[0] = 0; for(int i = 1; i < n; i++) { prefixSum2[i] = prefixSum2[i - 1] + prefixSum1[i - 1]; } for(int i = 0; i < n; i++) { ans[i] = prefixSum2[i]; } /* 第二阶段,处理后缀。 prefixSum1记录数组 a 的后缀和,即:prefixSum1[i]=a[n-1]+a[n-2]+..+a[i]. prefixSum2记录数组 prefixSum1 的后缀和,prefixSum2即为 i 之后的点到第 i 个点的代价和。 */ prefixSum1[n - 1] = a[n - 1]; for(int i = n - 2; i >= 0; i--) { prefixSum1[i] = prefixSum1[i + 1] + a[i]; } prefixSum2[n - 1] =0; for(int i = n - 2; i >= 0; i--) { prefixSum2[i] = prefixSum2[i + 1] + prefixSum1[i + 1]; } for(int i = 0; i < n; i++) { ans[i] += prefixSum2[i]; } /* ans[i] 即为a数组中所有点到第 i 点的代价和 */ } boolean haveZero(int[][] grid, int row, int column) { for(int i = 0; i < row; i++) { for(int j = 0; j < column; j++){ if(grid[i][j] == 0) { return true; } } } return false; }
第五章:深度优先算法
目录:
121:
public List<List<String>> findLadders(String start, String end, Set<String> dict) { List<List<String>> ladders = new ArrayList<List<String>>(); Map<String, List<String>> map = new HashMap<String, List<String>>(); Map<String, Integer> distance = new HashMap<String, Integer>(); dict.add(start); dict.add(end); bfs(map, distance, start, end, dict); List<String> path = new ArrayList<String>(); dfs(ladders, path, end, start, distance, map); return ladders; } void dfs(List<List<String>> ladders, List<String> path, String crt, String start, Map<String, Integer> distance, Map<String, List<String>> map) { path.add(crt); if (crt.equals(start)) { Collections.reverse(path); ladders.add(new ArrayList<String>(path)); Collections.reverse(path); } else { for (String next : map.get(crt)) { if (distance.containsKey(next) && distance.get(crt) == distance.get(next) + 1) { dfs(ladders, path, next, start, distance, map); } } } path.remove(path.size() - 1); } void bfs(Map<String, List<String>> map, Map<String, Integer> distance, String start, String end, Set<String> dict) { Queue<String> q = new LinkedList<String>(); q.offer(start); distance.put(start, 0); for (String s : dict) { map.put(s, new ArrayList<String>()); } while (!q.isEmpty()) { String crt = q.poll(); List<String> nextList = expand(crt, dict); for (String next : nextList) { map.get(next).add(crt); if (!distance.containsKey(next)) { distance.put(next, distance.get(crt) + 1); q.offer(next); } } } } List<String> expand(String crt, Set<String> dict) { List<String> expansion = new ArrayList<String>(); for (int i = 0; i < crt.length(); i++) { for (char ch = 'a'; ch <= 'z'; ch++) { if (ch != crt.charAt(i)) { String expanded = crt.substring(0, i) + ch + crt.substring(i + 1); if (dict.contains(expanded)) { expansion.add(expanded); } } } } return expansion; }
51:
public void swapItem(ArrayList<Integer> nums, int i, int j) { Integer tmp = nums.get(i); nums.set(i, nums.get(j)); nums.set(j, tmp); } public void swapList(ArrayList<Integer> nums, int i, int j) { while ( i < j) { swapItem(nums, i, j); i ++; j --; } } public ArrayList<Integer> previousPermuation(ArrayList<Integer> nums) { int len = nums.size(); if ( len <= 1) return nums; int i = len - 1; while ( i > 0 && nums.get(i) >= nums.get(i-1) ) i --; swapList(nums, i, len - 1); if ( i != 0) { int j = i; while ( nums.get(j) >= nums.get(i-1) ) j++; swapItem(nums, j, i-1); } return nums; }
52:
public void swapItem(int[] nums, int i, int j) { int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } public void swapList(int[] nums, int i, int j) { while (i < j) { swapItem(nums, i, j); i ++; j --; } } public int[] nextPermutation(int[] nums) { int len = nums.length; if ( len <= 1) return nums; int i = len - 1; while (i > 0 && nums[i] <= nums[i - 1]) i --; swapList(nums, i, len - 1); if (i != 0) { int j = i; while (nums[j] <= nums[i - 1]) j++; swapItem(nums, j, i-1); } return nums; }
public void reverse(int[] num, int start, int end) { for (int i = start, j = end; i < j; i++, j--) { int temp = num[i]; num[i] = num[j]; num[j] = temp; } } public int[] nextPermutation(int[] num) { // find the last increase index int index = -1; for (int i = num.length - 2; i >= 0; i--) { if (num[i] < num[i + 1]) { index = i; break; } } if (index == -1) { reverse(num, 0, num.length - 1); return num; } // find the first bigger one int biggerIndex = index + 1; for (int i = num.length - 1; i > index; i--) { if (num[i] > num[index]) { biggerIndex = i; break; } } // swap them to make the permutation bigger int temp = num[index]; num[index] = num[biggerIndex]; num[biggerIndex] = temp; // reverse the last part reverse(num, index + 1, num.length - 1); return num; }
190:
public void reverse(int[] num, int start, int end) { for (int i = start, j = end; i < j; i++, j--) { int temp = num[i]; num[i] = num[j]; num[j] = temp; } } public void nextPermutation(int[] num) { // find the last increase index int index = -1; for (int i = num.length - 2; i >= 0; i--) { if (num[i] < num[i + 1]) { index = i; break; } } if (index == -1) { reverse(num, 0, num.length - 1); return; } // find the first bigger one int biggerIndex = index + 1; for (int i = num.length - 1; i > index; i--) { if (num[i] > num[index]) { biggerIndex = i; break; } } // swap them to make the permutation bigger int temp = num[index]; num[index] = num[biggerIndex]; num[biggerIndex] = temp; // reverse the last part reverse(num, index + 1, num.length - 1); }
211:
public boolean stringPermutation(String A, String B) { // Write your code here int[] cnt = new int[1000]; for (int i = 0; i < A.length(); ++i) cnt[(int)A.charAt(i)] += 1; for (int i = 0; i < B.length(); ++i) cnt[(int)B.charAt(i)] -= 1; for (int i = 0; i < 1000; ++i) if (cnt[i] != 0) return false; return true; }
197:
public class Solution { /** * @param A an integer array * @return a long integer */ long fac(int numerator) { long now = 1; for (int i = 1; i <= numerator; i++) { now *= (long) i; } return now; } long generateNum(HashMap<Integer, Integer> hash) { long denominator = 1; int sum = 0; for (int val : hash.values()) { if(val == 0 ) continue; denominator *= fac(val); sum += val; } if(sum==0) { return sum; } return fac(sum) / denominator; } public long permutationIndex(int[] A) { HashMap<Integer, Integer> hash = new HashMap<Integer, Integer>(); for (int i = 0; i < A.length; i++) { if (hash.containsKey(A[i])) hash.put(A[i], hash.get(A[i]) + 1); else { hash.put(A[i], 1); } } long ans = 0; for (int i = 0; i < A.length; i++) { for (int j = i + 1; j < A.length; j++) { if (A[j] < A[i]) { hash.put(A[j], hash.get(A[j]) - 1); ans += generateNum(hash); hash.put(A[j], hash.get(A[j]) + 1); } } hash.put(A[i], hash.get(A[i])-1); } return ans+1; } }
10:
public List<String> stringPermutation2(String str) { // Write your code here List<String> result = new ArrayList<String>(); char[] s = str.toCharArray(); Arrays.sort(s); result.add(String.valueOf(s)); while ((s = nextPermutation(s)) != null) { result.add(String.valueOf(s)); } return result; } public char[] nextPermutation(char[] nums) { int index = -1; for(int i = nums.length -1; i > 0; i--){ if(nums[i] > nums[i-1]){ index = i-1; break; } } if(index == -1){ return null; } for(int i = nums.length -1; i > index; i--){ if(nums[i] > nums[index]){ char temp = nums[i]; nums[i] = nums[index]; nums[index] = temp; break; } } reverse(nums,index+1,nums.length-1); return nums; } public void reverse(char[] num, int start, int end) { for (int i = start, j = end; i < j; i++, j--) { char temp = num[i]; num[i] = num[j]; num[j] = temp; } }
198:
long fac(int numerator) { long now = 1; for (int i = 1; i <= numerator; i++) { now *= (long) i; } return now; } long generateNum(HashMap<Integer, Integer> hash) { long denominator = 1; int sum = 0; for (int val : hash.values()) { if(val == 0 ) continue; denominator *= fac(val); sum += val; } if(sum==0) { return sum; } return fac(sum) / denominator; } public long permutationIndexII(int[] A) { HashMap<Integer, Integer> hash = new HashMap<Integer, Integer>(); for (int i = 0; i < A.length; i++) { if (hash.containsKey(A[i])) hash.put(A[i], hash.get(A[i]) + 1); else { hash.put(A[i], 1); } } long ans = 0; for (int i = 0; i < A.length; i++) { HashMap<Integer, Integer> flag = new HashMap<Integer, Integer>(); for (int j = i + 1; j < A.length; j++) { if (A[j] < A[i] && !flag.containsKey(A[j])) { flag.put(A[j], 1); hash.put(A[j], hash.get(A[j])-1); ans += generateNum(hash); hash.put(A[j], hash.get(A[j])+1); } } hash.put(A[i], hash.get(A[i])-1); } return ans + 1; }
public long permutationIndexII(int[] A) { if (A == null || A.length == 0) return 0L; Map<Integer, Integer> counter = new HashMap<Integer, Integer>(); long index = 1, fact = 1, multiFact = 1; for (int i = A.length - 1; i >= 0; i--) { if (counter.containsKey(A[i])) { counter.put(A[i], counter.get(A[i]) + 1); multiFact *= counter.get(A[i]); } else { counter.put(A[i], 1); } int rank = 0; for (int j = i + 1; j < A.length; j++) { if (A[i] > A[j]) rank++; } index += rank * fact / multiFact; fact *= (A.length - i); } return index; }
107:
private int getMaxLength(Set<String> dict) { int maxLength = 0; for (String word : dict) { maxLength = Math.max(maxLength, word.length()); } return maxLength; } public boolean wordBreak(String s, Set<String> dict) { if (s == null || s.length() == 0) { return true; } int maxLength = getMaxLength(dict); boolean[] canSegment = new boolean[s.length() + 1]; canSegment[0] = true; for (int i = 1; i <= s.length(); i++) { canSegment[i] = false; for (int lastWordLength = 1; lastWordLength <= maxLength && lastWordLength <= i; lastWordLength++) { if (!canSegment[i - lastWordLength]) { continue; } String word = s.substring(i - lastWordLength, i); if (dict.contains(word)) { canSegment[i] = true; break; } } } return canSegment[s.length()]; }
108:
private boolean[][] CalcPalin(String s, int n) { boolean[][] isPalin = new boolean[n][n]; int i, j, p; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { isPalin[i][j] = false; } } for (p = 0; p < n; ++p) { i = j = p; while (i >= 0 && j < n && s.charAt(i) == s.charAt(j)) { isPalin[i][j] = true; --i; ++j; } } for (p = 0; p < n-1; ++p) { i = p; j = p + 1; while (i >= 0 && j < n && s.charAt(i) == s.charAt(j)) { isPalin[i][j] = true; --i; ++j; } } return isPalin; } public int minCut(String s) { int n = s.length(); if (n == 0) { return 0; } int[] f = new int[n+1]; int i, j, p; boolean[][] isPalin = CalcPalin(s, n); f[0] = 0; for (i=1; i<=n; ++i) { f[i] = Integer.MAX_VALUE; for (j = 0; j < i; ++j) { if (isPalin[j][i-1] && f[j] != Integer.MAX_VALUE && f[j] + 1 < f[i]) { f[i] = f[j] + 1; } } } return f[n] - 1; }
第六章:链表与数组
目录:
103:
public ListNode detectCycle(ListNode head) { if (head == null || head.next==null) { return null; } ListNode fast, slow; fast = head.next; slow = head; while (fast != slow) { if(fast==null || fast.next==null) return null; fast = fast.next.next; slow = slow.next; } while (head != slow.next) { head = head.next; slow = slow.next; } return head; }
620:
public int maxSubarray4(int[] nums, int k) { // Write your code here int n = nums.length; if (n < k) return 0; int result = 0; for (int i = 0; i < k; ++i) result += nums[i]; int[] sum = new int[n + 1]; sum[0] = 0; int min_prefix = 0; for (int i = 1; i <= n; ++i) { sum[i] = sum[i - 1] + nums[i - 1]; if (i >= k && sum[i] - min_prefix > result) { result = Math.max(result, sum[i] - min_prefix); } if (i >= k) { min_prefix = Math.min(min_prefix, sum[i - k + 1]); } } return result; }
191:
public class Solution { /** * @param nums: an array of integers * @return: an integer */ public int maxProduct(int[] nums) { int[] max = new int[nums.length]; int[] min = new int[nums.length]; min[0] = max[0] = nums[0]; int result = nums[0]; for (int i = 1; i < nums.length; i++) { min[i] = max[i] = nums[i]; if (nums[i] > 0) { max[i] = Math.max(max[i], max[i - 1] * nums[i]); min[i] = Math.min(min[i], min[i - 1] * nums[i]); } else if (nums[i] < 0) { max[i] = Math.max(max[i], min[i - 1] * nums[i]); min[i] = Math.min(min[i], max[i - 1] * nums[i]); } result = Math.max(result, max[i]); } return result; } }
//LintCode version2: O(1) Space Complexity public class Solution { /** * @param nums: an array of integers * @return: an integer */ public int maxProduct(int[] nums) { // write your code here if (nums == null || nums.length == 0) { return 0; } int minPre = nums[0], maxPre = nums[0]; int max = nums[0], min = nums[0]; int res = nums[0]; for (int i = 1; i < nums.length; i ++) { max = Math.max(nums[i], Math.max(maxPre * nums[i], minPre * nums[i])); min = Math.min(nums[i], Math.min(maxPre * nums[i], minPre * nums[i])); res = Math.max(res, max); maxPre = max; minPre = min; } return res; } }
45:
public int maxDiffSubArrays(int[] nums) { // write your code here int size = nums.length; int[] left_max = new int[size]; int[] left_min = new int[size]; int[] right_max = new int[size]; int[] right_min = new int[size]; int[] copy = new int[size]; /*Get negative copy*/ for(int i = 0; i < size; i++){ copy[i] = -1 * nums[i]; } int max = Integer.MIN_VALUE; int sum = 0; int minSum = 0; /*Forward: get max subarray*/ for(int i = 0; i < size; i++){ sum += nums[i]; max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); left_max[i] = max; } /*Backward: get max subarray*/ max = Integer.MIN_VALUE; sum = 0; minSum = 0; for(int i = size - 1; i >= 0; i--){ sum += nums[i]; max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); right_max[i] = max; } /*Forward: get min subarray*/ max = Integer.MIN_VALUE; sum = 0; minSum = 0; for(int i = 0; i < size; i++){ sum += copy[i]; max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); left_min[i] = -1 * max; } /*Backward: get min subarray*/ max = Integer.MIN_VALUE; sum = 0; minSum = 0; for(int i = size - 1; i >= 0; i--){ sum += copy[i]; max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); right_min[i] = -1 * max; } int diff = 0; for(int i = 0; i < size - 1; i++){ diff = Math.max(diff, Math.abs(left_max[i] - right_min[i + 1])); diff = Math.max(diff, Math.abs(left_min[i] - right_max[i + 1])); } return diff; }
42:
public int maxTwoSubArrays(ArrayList<Integer> nums) { // write your code int size = nums.size(); int[] left = new int[size]; int[] right = new int[size]; int sum = 0; int minSum = 0; int max = Integer.MIN_VALUE; for(int i = 0; i < size; i++){ sum += nums.get(i); max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); left[i] = max; } sum = 0; minSum = 0; max = Integer.MIN_VALUE; for(int i = size - 1; i >= 0; i--){ sum += nums.get(i); max = Math.max(max, sum - minSum); minSum = Math.min(sum, minSum); right[i] = max; } max = Integer.MIN_VALUE; for(int i = 0; i < size - 1; i++){ max = Math.max(max, left[i] + right[i + 1]); } return max; }
43:
// 方法一 划分类DP public class Solution { /** * @param nums: A list of integers * @param k: An integer denote to find k non-overlapping subarrays * @return: An integer denote the sum of max k non-overlapping subarrays */ public int maxSubArray(int[] nums, int k) { if (nums.length < k) { return 0; } int len = nums.length; int[][] globalMax = new int[k + 1][len + 1]; int[][] localMax = new int[k + 1][len + 1]; for (int i = 1; i <= k; i++) { localMax[i][i-1] = Integer.MIN_VALUE; //小于 i 的数组不能够partition for (int j = i; j <= len; j++) { localMax[i][j] = Math.max(localMax[i][j-1], globalMax[i - 1][j-1]) + nums[j-1]; if (j == i) globalMax[i][j] = localMax[i][j]; else globalMax[i][j] = Math.max(globalMax[i][j-1], localMax[i][j]); } } return globalMax[k][len]; } }
//方法二 public class Solution { /** * @param nums: A list of integers * @param k: An integer denote to find k non-overlapping subarrays * @return: An integer denote the sum of max k non-overlapping subarrays */ public static int maxSubArray(ArrayList<Integer> nums, int k) { // write your code int len = nums.size(); int[][] f = new int[k+1][len]; for (int i = 1; i < k+1; i++) { int sum = 0; for (int j = 0; j < i; j++) { sum += nums.get(j); } f[i][i-1] = sum; } for (int i = 1; i < len; i++) { f[1][i] = Math.max(f[1][i-1]+nums.get(i), nums.get(i)); } for (int i = 2; i < k+1; i++) { for (int n = i; n< len; n++) { int curMax = f[i][n-1] + nums.get(n); for (int j = i-2; j < n; j++) { if ((f[i-1][j] + nums.get(n)) > curMax) { curMax = f[i-1][j] + nums.get(n); } } f[i][n] = curMax; } } int res = Integer.MIN_VALUE; for (int i = k-1; i < len; i++){ if (f[k][i] > res) { res = f[k][i]; } } return res; } }
621:
public int maxSubarray5(int[] nums, int k1, int k2) { // Write your code here int n = nums.length; if (n < k1) return 0; int result = Integer.MIN_VALUE; int[] sum = new int[n + 1]; sum[0] = 0; LinkedList<Integer> queue = new LinkedList<Integer>(); for (int i = 1; i <= n; ++i) { sum[i] = sum[i - 1] + nums[i - 1]; if (!queue.isEmpty() && queue.getFirst() < i - k2) { queue.removeFirst(); } if (i >= k1) { while (!queue.isEmpty() && sum[queue.getLast()] > sum[i - k1]) { queue.removeLast(); } queue.add(i - k1); } // [i - k2, i - k1] if (!queue.isEmpty() && sum[i] - sum[queue.getFirst()] > result) { result = Math.max(result, sum[i] - sum[queue.getFirst()]); } } return result; }
第七章:两根指针
目录:
58:
public List<List<Integer>> fourSum(int[] num, int target) { List<List<Integer>> rst = new ArrayList<List<Integer>>(); Arrays.sort(num); for (int i = 0; i < num.length - 3; i++) { if (i != 0 && num[i] == num[i - 1]) { continue; } for (int j = i + 1; j < num.length - 2; j++) { if (j != i + 1 && num[j] == num[j - 1]) continue; int left = j + 1; int right = num.length - 1; while (left < right) { int sum = num[i] + num[j] + num[left] + num[right]; if (sum < target) { left++; } else if (sum > target) { right--; } else { ArrayList<Integer> tmp = new ArrayList<Integer>(); tmp.add(num[i]); tmp.add(num[j]); tmp.add(num[left]); tmp.add(num[right]); rst.add(tmp); left++; right--; while (left < right && num[left] == num[left - 1]) { left++; } while (left < right && num[right] == num[right + 1]) { right--; } } } } } return rst; }
59:
public int threeSumClosest(int[] numbers, int target) { if (numbers == null || numbers.length < 3) { return -1; } Arrays.sort(numbers); int bestSum = numbers[0] + numbers[1] + numbers[2]; for (int i = 0; i < numbers.length; i++) { int start = i + 1, end = numbers.length - 1; while (start < end) { int sum = numbers[i] + numbers[start] + numbers[end]; if (Math.abs(target - sum) < Math.abs(target - bestSum)) { bestSum = sum; } if (sum < target) { start++; } else { end--; } } } return bestSum; }
382:
public int triangleCount(int S[]) { // write your code here int left = 0, right = S.length - 1; int ans = 0; Arrays.sort(S); for(int i = 0; i < S.length; i++) { left = 0; right = i - 1; while(left < right) { if(S[left] + S[right] > S[i]) { ans = ans + (right - left); right --; } else { left ++; } } } return ans; }
461:
public int kthSmallest(int k, int[] nums) { // write your code here return quickSelect(nums, 0, nums.length - 1, k - 1); } public int quickSelect(int[] A, int start, int end , int k) { if (start == end) return A[start]; int left = start, right = end; int pivot = A[(start + end) / 2]; while (left <= right) { while (left <= right && A[left] < pivot) { left++; } while (left <= right && A[right] > pivot) { right--; } if (left <= right) { int temp = A[left]; A[left] = A[right]; A[right] = temp; left++; right--; } } if (right >= k && start <= right) return quickSelect(A, start, right, k); else if (left <= k && left <= end) return quickSelect(A, left, end, k); else return A[k]; }
443:
public int twoSum2(int[] nums, int target) { if (nums == null || nums.length < 2) { return 0; } Arrays.sort(nums); int left = 0, right = nums.length - 1; int count = 0; while (left < right) { if (nums[left] + nums[right] <= target) { left++; } else { count += right - left; right--; } } return count; }
610:
class Pair { public int idx, num; public Pair(int i, int n) { this.idx = i; this.num = n; } } public class Solution { /* * @param nums an array of Integer * @param target an integer * @return [index1 + 1, index2 + 1] (index1 < index2) */ public int[] twoSum7(int[] nums, int target) { // write your code here int[] indexs = new int[2]; if (nums == null || nums.length < 2) return indexs; if (target < 0) target = -target; int n = nums.length; Pair[] pairs = new Pair[n]; for (int i = 0; i < n; ++i) pairs[i] = new Pair(i, nums[i]); Arrays.sort(pairs, new Comparator<Pair>(){ public int compare(Pair p1, Pair p2){ return p1.num - p2.num; } }); int j = 0; for (int i = 0; i < n; ++i) { if (i == j) j ++; while (j < n && pairs[j].num - pairs[i].num < target) j ++; if (j < n && pairs[j].num - pairs[i].num == target) { indexs[0] = pairs[i].idx + 1; indexs[1] = pairs[j].idx + 1; if (indexs[0] > indexs[1]) { int temp = indexs[0]; indexs[0] = indexs[1]; indexs[1] = temp; } return indexs; } } return indexs; } }
625:
public void partition2(int[] nums, int low, int high) { // Write your code here if (nums == null || nums.length <= 1) { return; } int pl = 0, pr = nums.length - 1; int i = 0; while (i <= pr) { if (nums[i] < low) { swap(nums, pl, i); pl++; i++; } else if (nums[i] > high) { swap(nums, pr, i); pr--; } else { i ++; } } } private void swap(int[] nums, int i, int j) { int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; }
第八章:哈希表与堆
目录:
124:
public int longestConsecutive(int[] nums) { HashSet<Integer> set = new HashSet<>(); for (int i = 0; i < nums.length; i++) { set.add(nums[i]); } int longest = 0; for (int i = 0; i < nums.length; i++) { int down = nums[i] - 1; while (set.contains(down)) { set.remove(down); down--; } int up = nums[i] + 1; while (set.contains(up)) { set.remove(up); up++; } longest = Math.max(longest, up - down - 1); } return longest; }
130:
// Version Linpz public class Solution { /** * @param A: Given an integer array * @return: void */ private void siftdown(int[] A, int k) { while (k * 2 + 1 < A.length) { int son = k * 2 + 1; if (k * 2 + 2 < A.length && A[son] > A[k * 2 + 2]) son = k * 2 + 2; if (A[son] >= A[k]) break; int temp = A[son]; A[son] = A[k]; A[k] = temp; k = son; } } public void heapify(int[] A) { for (int i = (A.length - 1) / 2; i >= 0; i--) { siftdown(A, i); } } }
// Version 1: this cost O(n) public class Solution { /** * @param A: Given an integer array * @return: void */ private void siftdown(int[] A, int k) { while (k < A.length) { int smallest = k; if (k * 2 + 1 < A.length && A[k * 2 + 1] < A[smallest]) { smallest = k * 2 + 1; } if (k * 2 + 2 < A.length && A[k * 2 + 2] < A[smallest]) { smallest = k * 2 + 2; } if (smallest == k) { break; } int temp = A[smallest]; A[smallest] = A[k]; A[k] = temp; k = smallest; } } public void heapify(int[] A) { for (int i = A.length / 2; i >= 0; i--) { siftdown(A, i); } // for } }
// Version 2: This cost O(nlogn) public class Solution { /** * @param A: Given an integer array * @return: void */ private void siftup(int[] A, int k) { while (k != 0) { int father = (k - 1) / 2; if (A[k] > A[father]) { break; } int temp = A[k]; A[k] = A[father]; A[father] = temp; k = father; } } public void heapify(int[] A) { for (int i = 0; i < A.length; i++) { siftup(A, i); } } }
471:
class Pair { String key; int value; Pair(String key, int value) { this.key = key; this.value = value; } } public class Solution { /** * @param words an array of string * @param k an integer * @return an array of string */ private Comparator<Pair> pairComparator = new Comparator<Pair>() { public int compare(Pair left, Pair right) { if (left.value != right.value) { return left.value - right.value; } return right.key.compareTo(left.key); } }; public String[] topKFrequentWords(String[] words, int k) { if (k == 0) { return new String[0]; } HashMap<String, Integer> counter = new HashMap<>(); for (String word : words) { if (counter.containsKey(word)) { counter.put(word, counter.get(word) + 1); } else { counter.put(word, 1); } } PriorityQueue<Pair> Q = new PriorityQueue<Pair>(k, pairComparator); for (String word : counter.keySet()) { Pair peak = Q.peek(); Pair newPair = new Pair(word, counter.get(word)); if (Q.size() < k) { Q.add(newPair); } else if (pairComparator.compare(newPair, peak) > 0) { Q.poll(); Q.add(newPair); } } String[] result = new String[k]; int index = 0; while (!Q.isEmpty()) { result[index++] = Q.poll().key; } // reverse for (int i = 0; i < index / 2; i++) { String temp = result[i]; result[i] = result[index - i - 1]; result[index - i - 1] = temp; } return result; } }
486:
class Element { public int row, col, val; Element(int row, int col, int val) { this.row = row; this.col = col; this.val = val; } } public class Solution { private Comparator<Element> ElementComparator = new Comparator<Element>() { public int compare(Element left, Element right) { return left.val - right.val; } }; /** * @param arrays k sorted integer arrays * @return a sorted array */ public int[] mergekSortedArrays(int[][] arrays) { if (arrays == null) { return new int[0]; } int total_size = 0; Queue<Element> Q = new PriorityQueue<Element>( arrays.length, ElementComparator); for (int i = 0; i < arrays.length; i++) { if (arrays[i].length > 0) { Element elem = new Element(i, 0, arrays[i][0]); Q.add(elem); total_size += arrays[i].length; } } int[] result = new int[total_size]; int index = 0; while (!Q.isEmpty()) { Element elem = Q.poll(); result[index++] = elem.val; if (elem.col + 1 < arrays[elem.row].length) { elem.col += 1; elem.val = arrays[elem.row][elem.col]; Q.add(elem); } } return result; } }
545:
public class Solution { /* * @param k: An integer */ private int maxSize; private Queue<Integer> minheap; public Solution(int k) { minheap = new PriorityQueue<>(); maxSize = k; } public void add(int num) { if (minheap.size() < maxSize) { minheap.offer(num); return; } if (num > minheap.peek()) { minheap.poll(); minheap.offer(num); } } public List<Integer> topk() { Iterator it = minheap.iterator(); List<Integer> result = new ArrayList<Integer>(); while (it.hasNext()) { result.add((Integer) it.next()); } Collections.sort(result, Collections.reverseOrder()); return result; } }
601:
public class Vector2D implements Iterator<Integer> { private Iterator<List<Integer>> i; private Iterator<Integer> j; public Vector2D(List<List<Integer>> vec2d) { // Initialize your data structure here i = vec2d.iterator(); j = null; } @Override public Integer next() { // Write your code here hasNext(); return j.next(); } @Override public boolean hasNext() { // Write your code here while ((j == null || !j.hasNext()) && i.hasNext()) j = i.next().iterator(); return j != null && j.hasNext(); } @Override public void remove() {} } /** * Your Vector2D object will be instantiated and called as such: * Vector2D i = new Vector2D(vec2d); * while (i.hasNext()) v[f()] = i.next(); */
551:
// 递归 /** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * public interface NestedInteger { * * // @return true if this NestedInteger holds a single integer, * // rather than a nested list. * public boolean isInteger(); * * // @return the single integer that this NestedInteger holds, * // if it holds a single integer * // Return null if this NestedInteger holds a nested list * public Integer getInteger(); * * // @return the nested list that this NestedInteger holds, * // if it holds a nested list * // Return null if this NestedInteger holds a single integer * public List<NestedInteger> getList(); * } */ public class Solution { public int depthSum(List<NestedInteger> nestedList) { return helper(nestedList, 1); } public int helper(List<NestedInteger> nestedList, int depth){ if (nestedList == null || nestedList.size() == 0) return 0; int sum = 0; for(NestedInteger ele : nestedList) { if (ele.isInteger()) { sum += ele.getInteger() * depth; } else { sum += helper(ele.getList(), depth + 1); } } return sum; } }
// 非递归 /** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * public interface NestedInteger { * * // @return true if this NestedInteger holds a single integer, * // rather than a nested list. * public boolean isInteger(); * * // @return the single integer that this NestedInteger holds, * // if it holds a single integer * // Return null if this NestedInteger holds a nested list * public Integer getInteger(); * * // @return the nested list that this NestedInteger holds, * // if it holds a nested list * // Return null if this NestedInteger holds a single integer * public List<NestedInteger> getList(); * } */ public class Solution { public int depthSum(List<NestedInteger> nestedList) { // Write your code here if (nestedList == null || nestedList.size() == 0) { return 0; } int sum = 0; Queue<NestedInteger> queue = new LinkedList<NestedInteger>(); for (NestedInteger nestedInt : nestedList) { queue.offer(nestedInt); } int depth = 0; while (!queue.isEmpty()) { int size = queue.size(); depth++; for (int i = 0; i < size; i++) { NestedInteger nestedInt = queue.poll(); if (nestedInt.isInteger()) { sum += nestedInt.getInteger() * depth; } else { for (NestedInteger innerInt : nestedInt.getList()) { queue.offer(innerInt); } } } } return sum; } }
494:
public class Stack { private Queue<Integer> queue1; private Queue<Integer> queue2; public Stack() { queue1 = new LinkedList<Integer>(); queue2 = new LinkedList<Integer>(); } private void moveItems() { while (queue1.size() != 1) { queue2.offer(queue1.poll()); } } private void swapQueues() { Queue<Integer> temp = queue1; queue1 = queue2; queue2 = temp; } /** * push a new item into the stack */ public void push(int value) { queue1.offer(value); } /** * return the top of the stack */ public int top() { moveItems(); int item = queue1.poll(); swapQueues(); queue1.offer(item); return item; } /** * pop the top of the stack and return it */ public void pop() { moveItems(); queue1.poll(); swapQueues(); } /** * check the stack is empty or not. */ public boolean isEmpty() { return queue1.isEmpty(); } }
575:
// version 1: Stack public class Solution { /** * @param s an expression includes numbers, letters and brackets * @return a string */ public String expressionExpand(String s) { Stack<Object> stack = new Stack<>(); int number = 0; for (char c : s.toCharArray()) { if (Character.isDigit(c)) { number = number * 10 + c - '0'; } else if (c == '[') { stack.push(Integer.valueOf(number)); number = 0; } else if (c == ']') { String newStr = popStack(stack); Integer count = (Integer) stack.pop(); for (int i = 0; i < count; i++) { stack.push(newStr); } } else { stack.push(String.valueOf(c)); } } return popStack(stack); } private String popStack(Stack<Object> stack) { // pop stack until get a number or empty Stack<String> buffer = new Stack<>(); while (!stack.isEmpty() && (stack.peek() instanceof String)) { buffer.push((String) stack.pop()); } StringBuilder sb = new StringBuilder(); while (!buffer.isEmpty()) { sb.append(buffer.pop()); } return sb.toString(); } } // version 2: Recursion public class Solution { /** * @param s an expression includes numbers, letters and brackets * @return a string */ public String expressionExpand(String s) { int number = 0; int paren = 0; String subString = ""; StringBuilder sb = new StringBuilder(); for (char c : s.toCharArray()) { if (c == '[') { if (paren > 0) { subString = subString + c; } paren++; } else if (c == ']') { paren--; if (paren == 0) { // push number * substring to sb String expandedString = expressionExpand(subString); for (int i = 0; i < number; i++) { sb.append(expandedString); } number = 0; subString = ""; } else { subString = subString + c; } } else if (c >= '0' && c <= '9') { if (paren == 0) { number = number * 10 + c - '0'; } else { subString = subString + c; } } else { if (paren == 0) { sb.append(String.valueOf(c)); } else { subString = subString + c; } } } return sb.toString(); } }
540:
public class ZigzagIterator { public Iterator<Integer> it1; public Iterator<Integer> it2; public int turns; /** * @param v1 v2 two 1d vectors */ public ZigzagIterator(List<Integer> v1, List<Integer> v2) { // initialize your data structure here. this.it1 = v1.iterator(); this.it2 = v2.iterator(); turns = 0; } public int next() { // Write your code here turns++; if((turns % 2 == 1 && it1.hasNext()) || (!it2.hasNext())) { return it1.next(); } else if((turns % 2 == 0 && it2.hasNext()) || (!it1.hasNext())) { return it2.next(); } return -1; } public boolean hasNext() { // Write your code here return it1.hasNext() || it2.hasNext(); } } /** * Your ZigzagIterator object will be instantiated and called as such: * ZigzagIterator solution = new ZigzagIterator(v1, v2); * while (solution.hasNext()) result.add(solution.next()); * Output result */
541:
public class ZigzagIterator2 { public List<Iterator<Integer>> its; public int turns; /** * @param vecs a list of 1d vectors */ public ZigzagIterator2(List<List<Integer>> vecs) { // initialize your data structure here. this.its = new ArrayList<Iterator<Integer>>(); for (List<Integer> vec : vecs) { if (vec.size() > 0) its.add(vec.iterator()); } turns = 0; } public int next() { // Write your code here int elem = its.get(turns).next(); if (its.get(turns).hasNext()) turns = (turns + 1) % its.size(); else { its.remove(turns); if (its.size() > 0) turns %= its.size(); } return elem; } public boolean hasNext() { // Write your code here return its.size() > 0; } } /** * Your ZigzagIterator2 object will be instantiated and called as such: * ZigzagIterator2 solution = new ZigzagIterator2(vecs); * while (solution.hasNext()) result.add(solution.next()); * Output result */
528:
/** * // This is the interface that allows for creating nested lists. * // You should not implement it, or speculate about its implementation * public interface NestedInteger { * * // @return true if this NestedInteger holds a single integer, * // rather than a nested list. * public boolean isInteger(); * * // @return the single integer that this NestedInteger holds, * // if it holds a single integer * // Return null if this NestedInteger holds a nested list * public Integer getInteger(); * * // @return the nested list that this NestedInteger holds, * // if it holds a nested list * // Return null if this NestedInteger holds a single integer * public List<NestedInteger> getList(); * } */ import java.util.Iterator; public class NestedIterator implements Iterator<Integer> { private Stack<NestedInteger> stack; private void pushListToStack(List<NestedInteger> nestedList) { Stack<NestedInteger> temp = new Stack<>(); for (NestedInteger nested : nestedList) { temp.push(nested); } while (!temp.isEmpty()) { stack.push(temp.pop()); } } public NestedIterator(List<NestedInteger> nestedList) { stack = new Stack<>(); pushListToStack(nestedList); } // @return {int} the next element in the iteration @Override public Integer next() { if (!hasNext()) { return null; } return stack.pop().getInteger(); } // @return {boolean} true if the iteration has more element or false @Override public boolean hasNext() { while (!stack.isEmpty() && !stack.peek().isInteger()) { pushListToStack(stack.pop().getList()); } return !stack.isEmpty(); } @Override public void remove() {} }
24:
public class LFUCache { private final Map<Integer, CacheNode> cache; private final LinkedHashSet[] frequencyList; private int lowestFrequency; private int maxFrequency; private final int maxCacheSize; // @param capacity, an integer public LFUCache(int capacity) { // Write your code here this.cache = new HashMap<Integer, CacheNode>(capacity); this.frequencyList = new LinkedHashSet[capacity * 2]; this.lowestFrequency = 0; this.maxFrequency = capacity * 2 - 1; this.maxCacheSize = capacity; initFrequencyList(); } // @param key, an integer // @param value, an integer // @return nothing public void set(int key, int value) { // Write your code here CacheNode currentNode = cache.get(key); if (currentNode == null) { if (cache.size() == maxCacheSize) { doEviction(); } LinkedHashSet<CacheNode> nodes = frequencyList[0]; currentNode = new CacheNode(key, value, 0); nodes.add(currentNode); cache.put(key, currentNode); lowestFrequency = 0; } else { currentNode.v = value; } addFrequency(currentNode); } public int get(int key) { // Write your code here CacheNode currentNode = cache.get(key); if (currentNode != null) { addFrequency(currentNode); return currentNode.v; } else { return -1; } } public void addFrequency(CacheNode currentNode) { int currentFrequency = currentNode.frequency; if (currentFrequency < maxFrequency) { int nextFrequency = currentFrequency + 1; LinkedHashSet<CacheNode> currentNodes = frequencyList[currentFrequency]; LinkedHashSet<CacheNode> newNodes = frequencyList[nextFrequency]; moveToNextFrequency(currentNode, nextFrequency, currentNodes, newNodes); cache.put(currentNode.k, currentNode); if (lowestFrequency == currentFrequency && currentNodes.isEmpty()) { lowestFrequency = nextFrequency; } } else { // Hybrid with LRU: put most recently accessed ahead of others: LinkedHashSet<CacheNode> nodes = frequencyList[currentFrequency]; nodes.remove(currentNode); nodes.add(currentNode); } } public int remove(int key) { CacheNode currentNode = cache.remove(key); if (currentNode != null) { LinkedHashSet<CacheNode> nodes = frequencyList[currentNode.frequency]; nodes.remove(currentNode); if (lowestFrequency == currentNode.frequency) { findNextLowestFrequency(); } return currentNode.v; } else { return -1; } } public int frequencyOf(int key) { CacheNode node = cache.get(key); if (node != null) { return node.frequency + 1; } else { return 0; } } public void clear() { for (int i = 0; i <= maxFrequency; i++) { frequencyList[i].clear(); } cache.clear(); lowestFrequency = 0; } public int size() { return cache.size(); } public boolean isEmpty() { return this.cache.isEmpty(); } public boolean containsKey(int key) { return this.cache.containsKey(key); } private void initFrequencyList() { for (int i = 0; i <= maxFrequency; i++) { frequencyList[i] = new LinkedHashSet<CacheNode>(); } } private void doEviction() { int currentlyDeleted = 0; double target = 1; // just one while (currentlyDeleted < target) { LinkedHashSet<CacheNode> nodes = frequencyList[lowestFrequency]; if (nodes.isEmpty()) { break; } else { Iterator<CacheNode> it = nodes.iterator(); while (it.hasNext() && currentlyDeleted++ < target) { CacheNode node = it.next(); it.remove(); cache.remove(node.k); } if (!it.hasNext()) { findNextLowestFrequency(); } } } } private void moveToNextFrequency(CacheNode currentNode, int nextFrequency, LinkedHashSet<CacheNode> currentNodes, LinkedHashSet<CacheNode> newNodes) { currentNodes.remove(currentNode); newNodes.add(currentNode); currentNode.frequency = nextFrequency; } private void findNextLowestFrequency() { while (lowestFrequency <= maxFrequency && frequencyList[lowestFrequency].isEmpty()) { lowestFrequency++; } if (lowestFrequency > maxFrequency) { lowestFrequency = 0; } } private class CacheNode { public final int k; public int v; public int frequency; public CacheNode(int k, int v, int frequency) { this.k = k; this.v = v; this.frequency = frequency; } } }