zoukankan      html  css  js  c++  java
  • 对SPI进行参数化结构设计

    前言

    为了避免每次SPI驱动重写,直接参数化,尽量一劳永逸。

    SPI master有啥用呢,你发现各种外围芯片的配置一般都是通过SPI配置的,只不过有3线和四线。

    SPI slave有啥用呢,当外部主机(cpu)要读取FPGA内部寄存器值,那就很有用了,fpga寄存器就相当于RAM,cpu通过SPI寻址读写数据。

    代码仅供参考,勿做商业用途。

    SPI salve

    SPI salve支持功能:(1)支持三线SPI或者四线SPI。通过define切换。

                                     (2)支持指令长度、帧长自定义。

                                     (3)工作时钟可自定义,大于SPI clk的2倍。

    用户只需修改:(1)几线SPI。(2)单帧长度。(3)指令长度。(4)寄存器开辟。

    注意:指令最高bit表示读写,低写高读,其余bit表示地址。指令接着为数据端,两者位宽之和即为SPI单帧长。

    //`define SPI_LINE  //是否是三线SPI
    `define SPI_FRAME_WIDTH 16 //SPI一帧长度为16
    `define SPI_INS_WIDTH 8    //SPI指令长
    `timescale 1ns/1ps
    ////
    module spi_slave 
    (
        input     i_clk               , //work clk
        input     i_rst_n             ,  
      
        input     i_spi_clk           , //SPI clk
        input     i_spi_cs            , //SPI cs
    
        `ifdef SPI_LINE                 //条件编译
        inout     io_spi_sdio          
        `else
        input     i_spi_mosi          , //SPI mosi
        output    o_spi_miso            //SPI miso
        `endif          
    );
    //位宽计算函数
    function integer clogb2 (input integer depth);
    begin
        for (clogb2=0; depth>0; clogb2=clogb2+1) 
            depth = depth >>1;                          
    end
    endfunction
    reg r_cs = 1'b1; //打一拍
    always @(posedge i_clk)
    begin
        r_cs <= i_spi_cs;
    end
    reg [1:0] r_spi_clk_edge = 2'b00; //SPI clk边沿检测
    always @(posedge i_clk)
    begin
        r_spi_clk_edge <= {r_spi_clk_edge[0],i_spi_clk};
    end //always
    reg [clogb2(`SPI_FRAME_WIDTH-1)-1:0] r_spi_cnt = 'd0;
    always @(posedge i_clk)
    begin
        if (r_cs) //cs为高则归零
            r_spi_cnt <= 'd0;
        else if (r_spi_clk_edge == 2'b10) //下降沿才计数
            r_spi_cnt <= r_spi_cnt + 'd1;
    end
    ////指令锁存
    reg [`SPI_INS_WIDTH-1:0] r_ins = 'd0;
    always @(posedge i_clk)
    begin
        if ((~r_cs) && (r_spi_clk_edge == 2'b01)) //上升沿锁存数据
        begin
            if ((r_spi_cnt >= 0) && (r_spi_cnt <= `SPI_INS_WIDTH-1))
            `ifdef SPI_LINE                 //条件编译
                r_ins <= {r_ins[`SPI_INS_WIDTH-2:0],io_spi_sdio};  
            `else
                r_ins <= {r_ins[`SPI_INS_WIDTH-2:0],i_spi_mosi};  
            `endif 
        end 
    end
    ////数值写入
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_data_rx = 'd0;
    always @(posedge i_clk)
    begin
        if ((~r_cs) && (r_spi_clk_edge == 2'b01)) //上升沿锁存数据
        begin
            if (r_spi_cnt >= `SPI_INS_WIDTH)
            `ifdef SPI_LINE
                r_data_rx <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio};
            `else
                r_data_rx <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi};   
            `endif
        end
    end
    ////用户寄存器定义
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg0 = 'd0;
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg1 = 'd0;
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg2 = 'd0;
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg3 = 'd0;
    ////
    always @(posedge i_clk,negedge i_rst_n)
    begin
        if (~i_rst_n)
        begin
            r_reg0 <= 'd0;
            r_reg1 <= 'd0;
            r_reg2 <= 'd0;
            r_reg3 <= 'd0;
    
    
    
        end
        else if ((~r_ins[`SPI_INS_WIDTH-1]) && (r_spi_cnt == (`SPI_FRAME_WIDTH-1)) && (~r_cs) && (r_spi_clk_edge == 2'b01))
        begin
        `ifdef SPI_LINE
            case (r_ins[`SPI_INS_WIDTH-2:0])
                'd0:begin r_reg0 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio}; end
                'd1:begin r_reg1 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio}; end
                'd2:begin r_reg2 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio}; end
                'd3:begin r_reg3 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio}; end
    
    
    
    
            endcase 
        `else
            case (r_ins[`SPI_INS_WIDTH-2:0])
                'd0:begin r_reg0 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi}; end
                'd1:begin r_reg1 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi}; end
                'd2:begin r_reg2 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi}; end
                'd3:begin r_reg3 <= {r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi}; end
    
    
    
    
            endcase 
        `endif 
        end
    
    end
    ////寄存器值读出
    reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_data_tx = 'd0;
    always @(posedge i_clk)
    begin
        if (r_ins[`SPI_INS_WIDTH-1] && (~r_cs) && (r_spi_clk_edge == 2'b10))
        begin 
            if (r_spi_cnt == (`SPI_INS_WIDTH-1))
            begin
                case (r_ins[`SPI_INS_WIDTH-2:0])
                    'd0:begin r_data_tx <= r_reg0; end 
                    'd1:begin r_data_tx <= r_reg1; end 
                    'd2:begin r_data_tx <= r_reg2; end 
                    'd3:begin r_data_tx <= r_reg3; end 
        
                endcase 
            end
            else 
                r_data_tx <= {r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],1'b0};
        end 
    end
    
    ////读取输出
    `ifdef SPI_LINE
    assign io_spi_sdio = (r_ins[`SPI_INS_WIDTH-1]) ? (((r_spi_cnt>=`SPI_INS_WIDTH) && (r_spi_cnt<`SPI_FRAME_WIDTH)) ? r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1] : 1'bz) : 1'bz;
    `else 
    assign o_spi_miso = ((r_spi_cnt>=`SPI_INS_WIDTH) && (r_spi_cnt<`SPI_FRAME_WIDTH)) ? r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1] : 1'b0;
    `endif
    
    endmodule // end the spi_slave model

    SPI master

    spi master内部仅仅封装SPI驱动,写入值读出控制由上层控制,这部分逻辑很simple,不赘述。用户只需给入SPI帧及控制使能即可。

    用户只需修改parameter参数:(1)单帧长。(2)指令长。(3)数据长。(4)工作时钟。(5)SPI clk。

    实现不使用状态机,采用线性序列计数法。

    //`define SPI_LINE  //是否是三线SPI
    `timescale 1ns/1ps
    module spi_master 
    #(parameter p_spi_frame_width = 16, //SPI单帧长度
      parameter p_spi_ins_width = 8   , //指令长度
      parameter p_spi_data_width = 8    //读出数据长度
     )
    (
        input                                i_clk             , //系统时钟
        input                                i_rst_n           ,
        input                                i_flag            , //检测到flag的上升沿则启动一次传输,一个时钟周期即可
       
        input     [p_spi_frame_width-1:0]    i_spi_data        ,
        output                               o_spi_cs          ,
        output                               o_spi_clk         ,
    
        `ifdef SPI_LINE                 //条件编译
        inout                                io_spi_sdio       ,          
        `else
        input                                i_spi_miso        , //SPI miso
        output                               o_spi_mosi        , //SPI mosi
        `endif 
        
        output                               o_transfer_done   , //单次传输完成
        output    [p_spi_data_width-1:0]     o_spi_data          //读取数据           
    );
    parameter p_clk_fre = 200; //XXM时钟频率
    parameter p_spi_clk_fre = 0.5*1000; //SPI 时钟速率,表示1M
    parameter p_clk_div = p_clk_fre * 1000/p_spi_clk_fre/2-1;
    parameter p_spi_cnt_max = p_spi_frame_width*2-1;
    parameter p_spi_ins_max = p_spi_ins_width*2-1;
    //位宽计算函数
    function integer clogb2 (input integer depth);
    begin
        for (clogb2=0; depth>0; clogb2=clogb2+1) 
            depth = depth >>1;                          
    end
    endfunction
    //把最大值赋值给线型,直接用p_clk_div仿真有问题,但实际上板是可以的
    wire [clogb2(p_clk_div)-1:0] w_clk_div;
    assign w_clk_div = p_clk_div;
    ////时钟分频
    reg [clogb2(p_clk_div)-1:0] r_cnt_div = 'd0;
    always @(posedge i_clk)
    begin
        if (r_cnt_div == w_clk_div)
            r_cnt_div <= 'd0;
        else 
            r_cnt_div <= r_cnt_div + 'd1;
    end //always
    wire w_clk_en; //分频时钟使能
    assign w_clk_en = (r_cnt_div == w_clk_div) ? 1'b1 : 1'b0;
    reg [1:0] r_flag_edge = 2'b00;
    reg [clogb2(p_spi_cnt_max)-1:0] r_spi_cnt = 'd0;
    always @(posedge i_clk) //flag边沿检测
    begin
        r_flag_edge <= {r_flag_edge[0],i_flag};
    end
    //flag信号展宽到低速时钟域
    reg r_flag_enlarge = 1'b0;
    always @(posedge i_clk)
    begin
        if (r_flag_edge == 2'b01) //上升沿拉高
            r_flag_enlarge <= 1'b1;
        else if (r_spi_cnt == p_spi_ins_max) //足够长的高电平才拉低
            r_flag_enlarge <= 1'b0;
    end
    reg [1:0] r_flag_enlarge_edge = 2'b00;
    always @(posedge i_clk)
    begin
        if (w_clk_en)
            r_flag_enlarge_edge <= {r_flag_enlarge_edge[0],r_flag_enlarge};
    end
    reg r_cs = 1'b1;
    always @(posedge i_clk)
    begin
        if (w_clk_en)
        begin
            if (r_flag_enlarge_edge == 2'b01) //检测到需要进行SPI操作
                r_cs <= 1'b0;
            else if (r_spi_cnt == p_spi_cnt_max) //计数到最大值表示一次SPI完成
                r_cs <= 1'b1;
        end
    end
    always @(posedge i_clk)
    begin
        if (w_clk_en)
        begin
            if(~r_cs) //在操作区间计数
                r_spi_cnt <= r_spi_cnt + 'd1;
            else 
                r_spi_cnt <= 'd0;
        end    
    end
    ////数据传输段
    reg [p_spi_frame_width-1:0] r_data = 'd0;
    always @(posedge i_clk)
    begin
        if (w_clk_en)
        begin
            if (r_flag_enlarge_edge == 2'b01) //上升沿刷入
                r_data <= i_spi_data;
            else if (r_spi_cnt[0] == 1'b1) //数据移动
                r_data <= {r_data[p_spi_frame_width-2:0],1'b1};
        end
    end
    ////数据读取段
    reg [p_spi_data_width-1:0] r_data_read = 'd0;
    always @(posedge i_clk)
    begin
        if (w_clk_en)
        begin
            if (i_spi_data[p_spi_frame_width-1] && (r_spi_cnt > p_spi_ins_max) && (r_spi_cnt[0] == 1'b0)) //是读
            `ifdef SPI_LINE
                r_data_read <= {r_data_read[p_spi_data_width-2:0],io_spi_sdio};
            `else
                r_data_read <= {r_data_read[p_spi_data_width-2:0],i_spi_miso};
            `endif 
        end    
    end
    ////SPI输出段
    assign o_spi_cs = r_cs;
    assign o_spi_clk = r_cs ? 1'b0 : r_spi_cnt[0];
    ////SPI SDIO的输入输出切换
    `ifdef SPI_LINE
    assign io_spi_sdio = (i_spi_data[p_spi_frame_width-1]) ? (((r_spi_cnt >= 'd0) && (r_spi_cnt <= p_spi_ins_max)) ? r_data[p_spi_frame_width-1] : 1'bz ) : r_data[p_spi_frame_width-1];
    `else 
    assign o_spi_mosi = r_data[p_spi_frame_width-1];
    `endif 
    assign o_transfer_done = ((~r_cs) && (r_spi_cnt == p_spi_cnt_max)) ? 1'b1:1'b0;
    assign o_spi_data = r_data_read;
    
    endmodule // end the spi_master model

    仿真如下所示:写入四个寄存器值,再读出。

    仿真代码如下:

    `define TRANSFER_NUMBER 8 //操作数为4
    `define DATA 8'ha5
    //`define SPI_LINE
    timeunit 1ns;
    timeprecision 1ps;
    module top;
    parameter p_sim_end_time = 1000000; //ns
    logic l_clk = 1'b0;
    always #2.5 l_clk = ~l_clk;
    ////复位
    logic l_rst_n  = 1'b0;
    initial begin
        #100 l_rst_n = 1'b1;
    end
    
    
    wire io_sdio;
    wire o_spi_cs;
    wire o_spi_clk;
    wire o_transfer_done;
    wire [7:0] o_spi_data;
    ////多个数据操作模式
    reg r_flag = 1'b0;
    reg [1:0] r_first_cnt = 2'b00;
    always @(posedge l_clk,negedge l_rst_n)
    begin
        if (~l_rst_n)
            r_first_cnt <= 2'b00;
        else if (r_first_cnt == 2'd3)
            r_first_cnt <= r_first_cnt;
        else 
            r_first_cnt <= r_first_cnt + 2'd1;
    end
    reg [1:0] r_transfer_done_edge = 2'b00;
    always @(posedge l_clk)
    begin
        r_transfer_done_edge <= {r_transfer_done_edge[0],o_transfer_done};
    end
    reg [3:0] r_transfer_cnt = 4'd0;
    always @(posedge l_clk)
    begin
        if ((r_first_cnt == 2'd2) && (r_transfer_cnt < `TRANSFER_NUMBER))
            r_flag <= 1'b1;
        else if ((r_transfer_done_edge == 2'b10) && (r_transfer_cnt < `TRANSFER_NUMBER-1))
            r_flag <= 1'b1;
        else 
            r_flag <= 1'b0;        
    end
    always @(posedge l_clk)
    begin
        if (r_transfer_done_edge == 2'b10)
            r_transfer_cnt <= r_transfer_cnt + 'd1;
    end
    reg [15:0] r_in_data  = 16'd0;
    always @(*)
    begin
        if (~l_rst_n) //仿真不执行此段仿真会有问题
            r_in_data  = 16'h0000;
        else 
        begin 
        case(r_transfer_cnt)
            4'd0:begin  r_in_data  = {8'h00,8'h43}; end 
            4'd1:begin  r_in_data  = 16'h0132; end 
            4'd2:begin  r_in_data  = 16'h0245; end 
            4'd3:begin  r_in_data  = 16'h0367; end 
            4'd4:begin  r_in_data  = 16'h8000; end 
            4'd5:begin  r_in_data  = 16'h8100; end 
            4'd6:begin  r_in_data  = 16'h8200; end 
            4'd7:begin  r_in_data  = 16'h8300; end 
    
            default:begin  r_in_data  = 16'h0000; end
        endcase
        end 
    end
    
    wire w_spi_miso;
    wire w_spi_mosi;
    
    spi_master inst_spi_master (
        .i_clk             (l_clk),
        .i_rst_n           (),
        .i_flag            (r_flag),
        .i_spi_data        (r_in_data),
        .o_spi_cs          (o_spi_cs),
        .o_spi_clk         (o_spi_clk),
        `ifdef SPI_LINE
        .io_spi_sdio       (io_sdio),
        `else
        .i_spi_miso        (w_spi_miso),
        .o_spi_mosi        (w_spi_mosi),
        `endif
        .o_transfer_done   (o_transfer_done),
        .o_spi_data        (o_spi_data)
        
    );
    
    spi_slave  inst_spi_slave (
        .i_clk                            (l_clk),
        .i_rst_n                          (l_rst_n),
    
        .i_spi_clk                        (o_spi_clk),
        .i_spi_cs                         (o_spi_cs),
        `ifdef SPI_LINE
        .io_spi_sdio                      (io_sdio)
        `else
        .i_spi_mosi                      (w_spi_mosi),
        .o_spi_miso                      (w_spi_miso)
        `endif
    
    );
    
    initial begin
        #p_sim_end_time $stop;
    end
    
        
    endmodule

    三线SPI:

     

    四线SPI:

    可以看到读写是一致的,验证通过。

     以上。

  • 相关阅读:
    linux-cp
    linux-rmdir
    linux-tail
    linux-head
    linux 重定向
    hadoop环境安装及错误总结
    vim 图册
    为什么可以这么快! awk 与python的应用
    八大排序算法的 Python 实现
    linux的文件隐藏属性 chattr lsattr
  • 原文地址:https://www.cnblogs.com/kingstacker/p/11106491.html
Copyright © 2011-2022 走看看