zoukankan      html  css  js  c++  java
  • Python 进阶(一些进阶技巧)

    个人笔记,基本都摘抄自 Python3 官方文档

    一. 上下文管理

    1. 传统的类方式

    Java 使用 try 来自动管理资源,只要实现了 AutoCloseable 接口,就可以部分摆脱手动 colse 的地狱了。
    而 Python,则是定义了两个 Protocol:__enter____exit__. 下面是一个 open 的模拟实现:

    class OpenContext(object):
    
        def __init__(self, filename, mode):  # 调用 open(filename, mode) 返回一个实例
            self.fp = open(filename, mode)
    
        def __enter__(self):  # 用 with 管理 __init__ 返回的实例时,with 会自动调用这个方法
            return self.fp
    
        # 退出 with 代码块时,会自动调用这个方法。
        def __exit__(self, exc_type, exc_value, traceback):
            self.fp.close()
    
    # 这里先构造了 OpenContext 实例,然后用 with 管理该实例
    with OpenContext('/tmp/a', 'a') as f:
        f.write('hello world')
    

    这里唯一有点复杂的,就是 __exit__ 方法。和 Java 一样,__exit__ 相当于 try - catch - finallyfinally 代码块,在发生异常时,它也会被调用。

    当没有异常发生时,__exit__ 的三个参数 exc_type, exc_value, traceback 都为 None,而当发生异常时,它们就对应异常的详细信息。
    发生异常时, __exit__ 的返回值将被用于决定是否向外层抛出该异常,返回 True 则抛出,返回 False 则抑制(swallow it)。

    Note 1:Python 3.6 提供了 async with 异步上下文管理器,它的 Protocol 和同步的 with 完全类似,是 __aenter____aexit__ 两个方法。
    Note 2:与 Java 相同,with 支持同时管理多个资源,因此可以直接写 with open(x) as a, open(y) as b: 这样的形式。

    2. contextlib

    2.1 @contextlib.contextmanager

    对于简单的 with 资源管理,编写一个类可能会显得比较繁琐,为此 contextlib 提供了一个方便的装饰器 @contextlib.contextmanager 用来简化代码。

    使用它,上面的 OpenContext 可以改写成这样:

    from contextlib import contextmanager
    @contextmanager
    def make_open_context(filename, mode):
        fp = open(filename, mode)
        try:
            yield fp  # 没错,这是一个生成器函数
        finally:
            fp.close()
    
    
    with make_open_context('/tmp/a', 'a') as f:
        f.write('hello world')
    

    使用 contextmanager 装饰一个生成器函数,yield 之前的代码对应 __enter__,finally 代码块就对应 __exit__.

    Note:同样,也有异步版本的装饰器 @contextlib.asynccontextmanager

    2.2 contextlib.closing(thing)

    用于将原本不支持 with 管理的资源,包装成一个 Context 对象。

    from contextlib import closing
    from urllib.request import urlopen
    
    with closing(urlopen('http://www.python.org')) as page:
        for line in page:
            print(line)
    
    # closing 等同于
    from contextlib import contextmanager
    
    @contextmanager
    def closing(thing):
        try:
            yield thing
        finally:
            thing.close()  # 就是添加了一个自动 close 的功能
    

    2.3 contextlib.suppress(*exceptions)

    使 with 管理器抑制代码块内任何被指定的异常:

    from contextlib import suppress
    
    with suppress(FileNotFoundError):
        os.remove('somefile.tmp')
    
    # 等同于
    try:
        os.remove('somefile.tmp')
    except FileNotFoundError:
        pass
    

    2.4 contextlib.redirect_stdout(new_target)

    将 with 代码块内的 stdout 重定向到指定的 target(可用于收集 stdout 的输出)

    f = io.StringIO()
    with redirect_stdout(f):  # 将输出直接写入到 StringIO
        help(pow)
    s = f.getvalue()
    
    # 或者直接写入到文件
    with open('help.txt', 'w') as f:
        with redirect_stdout(f):
            help(pow)
    

    redirect_stdout 函数返回的 Context 是可重入的( reentrant),可以重复使用。

    二、pathlib

    提供了 OS 无关的文件路径抽象,可以完全替代 os.pathglob.

    学会了 pathlib.Path,你就会了 Python 处理文件路径的所有功能。

    1. 路径解析与拼接

    from pathlib import Path
    
    data_folder = Path("./source_data/text_files/")
    data_file = data_folder / "raw_data.txt"  # Path 重载了 / 操作符,路径拼接超级方便
    
    # 路径的解析
    data_file.parent  # 获取父路径,这里的结果就是 data_folder
    data_foler.parent # 会返回 Path("source_data")
    data_file.parents[1] # 即获取到 data_file 的上上层目录,结果和上面一样是 Path("source_data")
    data_file.parents[2] # 上上上层目录,Path(".")
    
    dara_file.name # 文件名 "raw_data.txt"
    dara_file.suffix  # 文件的后缀(最末尾的)".txt",还可用 suffixes 获取所有后缀
    
    data_file.stem  # 去除掉最末尾的后缀后(只去除一个),剩下的文件名:raw_data
    
    # 替换文件名或者文件后缀
    data_file.with_name("test.txt")  # 变成 .../test.txt
    data_file.with_suffix(".pdf")  # 变成 .../raw_data.pdf
    
    # 当前路径与另一路径 的相对路径
    data_file.relative_to(data_folder)  # PosixPath('raw_data.txt')
    

    2. 常用的路径操作函数

    if not data_folder.exists():
        data_folder.mkdir(parents=True)  # 直接创建文件夹,如果父文件夹不存在,也自动创建
    
    if not filename.exists():  # 文件是否存在
        filename.touch()  # 直接创建空文件,或者用 filename.open() 直接获取文件句柄
    
    # 路径类型判断
    if data_file.is_file():  # 是文件
        print(data_file, "is a file")
    elif data_file.is_dir():  # 是文件夹
        for child in p.iterdir():  # 通过 Path.iterdir() 迭代文件夹中的内容
            print(child)
    
    # 路径解析
    # 获取文件的绝对路径(符号链接也会被解析到真正的文件)
    filename.resolve()  # 在不区分大小写的系统上(Windows),这个函数也会将大小写转换成实际的形式。
    
    # 可以直接获取 Home 路径或者当前路径
    Path.home() / "file.txt" # 有时需要以 home 为 base path 来构建文件路径
    Path.cwd()  / "file.txt" # 或者基于当前路径构建
    

    还有很多其它的实用函数,可在使用中慢慢探索。

    3. glob

    pathlib 也提供了 glob 支持,也就是广泛用在路径匹配上的一种简化正则表达式。

    data_file.match(glob_pattern)  # 返回 True 或 False,表示文件路径与给出的 glob pattern 是否匹配
    
    for py_file in data_folder.glob("*/*.py"):  # 匹配当前路径下的子文件夹中的 py 文件,会返回一个可迭代对象
        print(py_file)
    
    # 反向匹配,相当于 glob 模式开头添加 "**/"
    for py_file in data_folder.glob("**/*.py"):  # 匹配当前路径下的所有 py 文件(所有子文件夹也会被搜索),返回一个可迭代对象
        print(py_file)
    

    glob 中的 * 表示任意字符,而 ** 则表示任意层目录。(在大型文件树上使用 ** 速度会很慢!)

    三、functools

    functools 提供了几个有时很有用的函数和装饰器

    1. @functools.wraps

    这个装饰器用于使装饰器 copy 被装饰的对象的 __module__, __name__, __qualname__, __annotations__ and __doc__ 属性,这样装饰器就显得更加透明。

    from functools import wraps
    def my_decorator(f):
         @wraps(f)
         def wrapper(*args, **kwds):
             print('Calling decorated function')
             return f(*args, **kwds)
         return wrapper  # 用了 wraps,wrapper 会复制 f 的各种文档属性
    
    @my_decorator
    def func(xx):
        """ this is func's docstring"""
        print("this is func~")
    

    如果不用 wraps 的话,因为实际上返回的是 wrapper,被装饰对象的这些文档属性都会丢失。(比如 docstring)
    因此在使用 wrapper 装饰器时,添加 @wraps() 装饰器是个好习惯。

    2. functools.partial

    这个感觉和高等数学的偏函数很像:比如函数 z = f(x, y) 有 x 和 y 两个变量,现在把 x 看作常数,就可以对 y 进行求导运算。
    而 python 的 partial 也差不多,不过它不是把 x 看作常数,而是先给定 x 的值。用法如下:

    from functools import partial
    basetwo = partial(int, base=2)  # 先给定 int 函数的 base 参数为 2
    basetwo.__doc__ = 'Convert base 2 string to an int.'  # 如果需要文档,可以添加 __doc__ 属性
    basetwo('10010')  # return 18
    

    此外,还有个 partialmethod 函数,待了解

    3. @functools.lru_cache(maxsize=128, typed=False)

    如果某方法可能被频繁调用(使用相同的参数),而且它的结果在一定时间内不会改变。可以用 lru_cache 装饰它,减少运算量或 IO 操作。

    from functools import lru_cache
    
    # 缓存最近的(least recently used,lru) 64 次参数不同的调用结果。
    @lru_cache(maxsize=64)
    def my_sum(x):  # 后续的调用中,如果参数能匹配到缓存,就直接返回缓存结果
        return sum(x)
    

    比如用递归计算斐波那契数列,数值较低的参数会被频繁使用,于是可以用 lru_cache 来缓存它们。
    或者爬取网页,可能会需要频繁爬取一个变化不快的网页,这时完全可以用 cache 缓存。

    但是它不能控制缓存失效时间,因此不能用于 Web 系统的缓存。还是得自己写个简单的装饰器,把缓存存到 redis 里并设置 expires。或者直接用 Flask 或 Django 的 caching 插件。

    4. @functools.singledispatch

    单重派发,即根据函数的第一个参数的类型,来决定调用哪一个同名函数。

    @singledispatch
    def parse(arg):  # 首先定义一个默认函数
        print('没有合适的类型被调用')  # 如果参数类型没有匹配上,就调用这个默认函数
    
    @parse.register(type(None))  # 第一个参数为 None
    def _(arg):
        print('出现 None 了')
    
    @parse.register(int)  # 第一个参数为整数
    def _(arg):
        print('这次输入的是整数')
    
    @parse.register
    def _(arg: list):  # python3.7 开始,可以直接用类型注解来标注第一个参数的类型
        print('这次输入的是列表')
    

    画外:有单重派发,自然就有多重派发,Julia 语言就支持多重派发,即根据函数所有参数的类型,来决定调用哪一个同名函数。
    Julia 语言根本没有类这个定义,类型的所有方法都是通过多重派发来定义的。

    其他

    1. @functools.total_ordering:用于自动生成比较函数。
    2. functools.cmp_to_key(func):用于将老式的比较函数,转换成新式的 key 函数。

    四、operator

    operator 模块包含四种类型的方法:

    1. operator.itemgetter

    经常被用于 sorted/max/mix/itertools.groupby 等

    使用方法:

    # itemgetter
    f = itemgetter(2)
    f(r)  # return r[2]
    
    # 还能一次获取多个值,像 numpy 那样索引
    f2 = itemgetter(2,4,5)
    f2(r)  # return (r[2], r[4], r[5])
    
    # 或者使用 slice 切片
    s = itemgetter(slice(2, None))
    s[r]  # return r[2:]
    
    # dict 索引也能用
    d = itemgetter('rank', 'name')
    d[r]  # return d['rank'], d['name']
    

    用途:

    # 用于指定用于比较大小的属性
    key = itemgetter(1)
    sorted(iterable, key=key)  # 使用 iterable[1] 对 iterable 进行排序
    max(iterable, key=key)  # 找出最大的元素,使用 iterable[1] 做比较
    
    # 用于高级切片(比如像 numpy 那样的,指定只获取某几列)
    s = itemgetter(1,3,4)
    matrix = [[0,1,2,3,4], [1,2,3,4,5]]
    map(s, matrix)  # list 后得到 [(1, 3, 4), (2,4,5)]
    

    2. operator.attrgetter

    可用于动态获取对象的属性,与直接用 getattr() 不同的是,它可以嵌套访问属性。

    # 嵌套访问属性
    att = attrgetter("a.b.c")
    att(obj)  # return obj.a.b.c
    
    # 和 itemgetter 一样,也可以一次获取多个属性
    att = attrgetter("a.b.c", "x.y")
    att(obj)  # return (obj.a.b.c, obj.x.y)
    
    # 不嵌套的话,用 getattr 就行
    getattr(obj, "a")  # return obj.a
    

    这里可以回顾一下类的两个魔法函数:

    1. __getattr__: 当被访问的属性不存在时,这个方法会被调用,它的返回值会成为对象的该属性。
      • 用于动态生成实例的属性/函数
    2. __getattribute__: 与 __getattr__ 唯一的差别在于,访问对象的任何属性,都会直接调用这个方法,不管属性存不存在

    3. operator.methodcaller

    可用于调用函数,它和 attrgetter 很像,差别在于 attrgetter 只是返回指定的属性,而 methodcaller 会直接把指定的属性当成函数调用,然后返回结果。

    举例

    f = methodcaller('name', 'foo', bar=1)
    f(b)  # returns b.name('foo', bar=1)
    

    4. 各种操作符对应的函数

    operator.add、operator.sub、operator.mul、operator.div 等等,函数式编程有时需要用到。

    五、itertools

    itertools 提供了许多针对可迭代对象的实用函数

    方法很多,基本不可能一次全记住。还是要用到时多查吧。大致记住有提供哪些功能,需要用到时能想起可以查这个模块就行。

    1. 无限迭代器

    1. count(start=0, step=1): 从 start 开始,每次迭代时,返回值都加一个 step
      • 默认返回序列为 0 1 2 3...
    2. cycle(iterable): 不断循环迭代 iterable
    3. repeat(element, times=None): 默认永远返回 element。(如果 times 不为 None,就迭代 times 后结束)

    2. 排列组合迭代器

    1. product(p1, p2, ..., repeat=1):p1, p2... 的元素的笛卡尔积,相当于多层 for 循环
      • repeat 指参数重复次数,比如
    >>> from itertools import product
    >>> r = product([1, 2], [3, 4], [5, 6])  # 重复一次,也就是 (p1, p2, p3) 的笛卡尔积
    >>> pprint(list(r))       
    [(1, 3, 5),
     (1, 3, 6),
     (1, 4, 5),
     (1, 4, 6),
     (2, 3, 5),
     (2, 3, 6),
     (2, 4, 5),
     (2, 4, 6)]
    >>> r2 = product([1, 2], [3, 4], [5, 6], repeat=2)  # 重复两次,即 (p1, p2, p3, p1, p2, p3) 的笛卡尔积
    >>> pprint(list(r2))
    [(1, 3, 5, 1, 3, 5),
     (1, 3, 5, 1, 3, 6),
     (1, 3, 5, 1, 4, 5),
     (1, 3, 5, 1, 4, 6),
     (1, 3, 5, 2, 3, 5),
    ...
    
    1. permutations(p[, r]):p 中元素,长度为 r 的所有可能的排列。相当于 product 去重后的结果。
    2. combinations(p, r):既然有排列,当然就有组合了。

    3. 其他

    1. zip_longest(*iterables, fillvalue=None):和 zip 的差别在于,缺失的元素它会用 fillvalue 补全,而不是直接结束。
    2. takewhile()
    3. dropwhile()
    4. groupby()

    等等等,用得到的时候再查了。。。

    六、collections

    提供了一些实用的高级数据结构(容器)

    1. defaultdict:这个感觉是最常用的,可以给定 key 的默认值
    2. Counter:方便、快速的计数器。常用于分类统计
    3. deque:一个线程安全的双端队列
    4. OrderedDict:有时候会需要有序字典
    5. namedtuple:命名元组,有时用于参数传递。与 tuple 的差别是它提供了关键字参数和通过名字访问属性的功能
    6. ChainMap:将多个 map 连接(chain)在一起,提供一个统一的视图。因为是视图,所以原来的 map 不会被影响。
  • 相关阅读:
    django 之(一) --- DjangoRestFormwork
    工具 --- Git理解
    部署 --- Docker使用
    django 之(三) --- 会话|关系|静态*
    flask 之(七) --- 认证|文件|部署
    系统 --- Linux系统环境搭建
    flask 之(六) --- API|RestfulApi
    flask 之(五) --- 对象|钩子|拆分
    数据类型检测
    基本数据类型和引入数据类型
  • 原文地址:https://www.cnblogs.com/kirito-c/p/10503807.html
Copyright © 2011-2022 走看看