题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4034
题意:中文题面
思路:树链剖分入门题。 剖分后就是一个简单的区间更新和区间求和问题。用线段树去维护一下。 由于有一个操作是关于子树的,可以用DFS序来求,但是由于剖分后的序列都是连续的,所以只需要记录下返回当前根时前一个点的位置即可进行子树操作。
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cstring> #include<string> #include<algorithm> #include<stdio.h> #include<queue> #include<vector> #include<stack> #include<map> #include<set> #include<time.h> #include<cmath> #include<sstream> #include<assert.h> using namespace std; #define L(x) x<<1 #define R(x) x<<1|1 typedef long long int LL; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3fLL; const int MAXN = 100000+ 10; int val[MAXN], head[MAXN], tot, cnt; struct Edge{ int to,next; Edge(int _to = 0, int _next = 0) :to(_to), next(_next){}; }Edges[MAXN * 2]; void add(int u, int v){ Edges[tot].to = v; Edges[tot].next = head[u]; head[u] = tot++; } int id[MAXN], endid[MAXN], son[MAXN], deep[MAXN], size[MAXN], fa[MAXN], reid[MAXN], top[MAXN]; void Init(){ tot = 0; cnt = 0; memset(head, -1, sizeof(head)); memset(son, -1, sizeof(son)); } void DFS1(int u, int p,int dep){ fa[u] = p; size[u] = 1; deep[u] = dep; for (int i = head[u]; i != -1; i = Edges[i].next){ if (Edges[i].to != p){ DFS1(Edges[i].to, u,dep+1); size[u] += size[Edges[i].to]; if (son[u] == -1 || size[Edges[i].to] > size[son[u]]){ son[u] = Edges[i].to; } } } } void DFS2(int u, int tp){ id[u] = ++cnt; reid[id[u]] = u; top[u] = tp; if (son[u] == -1){ endid[u] = cnt; return; } DFS2(son[u], tp); for (int i = head[u]; i != -1; i = Edges[i].next){ if (son[u] != Edges[i].to&&Edges[i].to != fa[u]){ DFS2(Edges[i].to, Edges[i].to); } } endid[u] = cnt; } struct Node{ int st, ed; LL sum, lazy; }Seg[MAXN * 4]; void Build(int l, int r, int k){ Seg[k].st = l; Seg[k].ed = r; Seg[k].lazy = 0; if (l == r){ Seg[k].sum = val[reid[l]]; return; } int mid = (l + r) / 2; Build(l, mid, L(k)); Build(mid + 1, r, R(k)); Seg[k].sum = Seg[L(k)].sum + Seg[R(k)].sum; } void pushUp(int k){ Seg[k].sum = Seg[L(k)].sum + Seg[R(k)].sum; } void pushDown(int k){ if (Seg[k].lazy){ Seg[L(k)].sum += 1LL*Seg[k].lazy*(Seg[L(k)].ed - Seg[L(k)].st + 1); Seg[L(k)].lazy += Seg[k].lazy; Seg[R(k)].sum += 1LL*Seg[k].lazy*(Seg[R(k)].ed - Seg[R(k)].st + 1); Seg[R(k)].lazy += Seg[k].lazy; Seg[k].lazy = 0; } } void Add(int l, int r, int k,int val){ if (Seg[k].st == l&&Seg[k].ed == r){ Seg[k].lazy += val; Seg[k].sum += 1LL * val * (r - l + 1); return; } pushDown(k); if (r <= Seg[L(k)].ed){ Add(l, r, L(k),val); } else if (l >= Seg[R(k)].st){ Add(l, r, R(k),val); } else{ Add(l, Seg[L(k)].ed, L(k), val); Add(Seg[R(k)].st, r, R(k), val); } pushUp(k); } LL Query(int l, int r, int k){ if (Seg[k].st == l&&Seg[k].ed == r){ return Seg[k].sum; } pushDown(k); LL sum = 0; if (r <= Seg[L(k)].ed){ sum=Query(l, r, L(k)); } else if (l >= Seg[R(k)].st){ sum=Query(l, r, R(k)); } else{ sum=Query(l, Seg[L(k)].ed, L(k)) + Query(Seg[R(k)].st, r, R(k)); } pushUp(k); return sum; } LL Query(int x){ LL ans = 0; while (top[x]!=1){ ans += Query(id[top[x]], id[x],1); x = fa[top[x]]; } ans += Query(1,id[x], 1); return ans; } int main(){ //#ifdef kirito // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); //#endif // int start = clock(); int n, m; while (~scanf("%d%d",&n,&m)){ Init(); for (int i = 1; i <= n; i++){ scanf("%d", &val[i]); } for (int i = 1; i < n; i++){ int u, v; scanf("%d%d", &u, &v); add(u, v); add(v, u); } DFS1(1, 1, 0); DFS2(1, 1); Build(1, n, 1); while (m--){ int ope, x, a; scanf("%d", &ope); switch (ope) { case 1:scanf("%d%d", &x, &a); Add(id[x],id[x] , 1, a); break; case 2:scanf("%d%d", &x, &a); Add(id[x], endid[x], 1, a); break; default: scanf("%d", &x); printf("%lld ", Query(x)); break; } } } //#ifdef LOCAL_TIME // cout << "[Finished in " << clock() - start << " ms]" << endl; //#endif return 0; }