题目链接
题目描述
在一个长宽均为10,入口出口分别为(0,5)、(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经。
输入输出格式
输入格式:
第一排为n(n<=20),墙的数目。
接下来n排,每排5个实数x,a1,b1,a2,b2。
x表示墙的横坐标(所有墙都是竖直的),a1-b1和a2-b2之间为空缺。
a1、b1、a2、b2保持递增,x1-xn也是递增的。
输出格式:
输出最短距离,保留2位小数。
输入输出样例
输入样例#1:
2
4 2 7 8 9
7 3 4.5 6 7
输出样例#1:
10.06
思路
将墙的端点抽象为点,将墙抽象为线段,在任意两个可以建边(没有被线段隔断)的端点之间加边。
跑一遍(Floyd).
小细节:如果可以与起始点连边,则无需与中间其他点再加边。
Code
#include <cstdio>
#include <cmath>
#define inf 1e200
#define eps 1e-6
using namespace std;
typedef long long LL;
struct Point {
double x, y;
Point(double _x=0, double _y=0) : x(_x), y(_y) {}
Point operator + (const Point& b) const {
return Point(x+b.x, y+b.y);
}
Point operator - (const Point& b) const {
return Point(x-b.x, y-b.y);
}
double operator * (const Point& b) const {
return x*b.x + y*b.y;
}
double operator ^ (const Point& b) const {
return x*b.y - y*b.x;
}
}point[20][4];
struct Seg {
Point s, e;
Seg(Point _s, Point _e) : s(_s), e(_e) {}
Seg() {}
}wall[20][3];
double dist[100][100];
inline int id(int x, int y) { return 4*x+y-3; }
double euler_dist(Point a, Point b) {
return sqrt(pow(a.x-b.x,2)+pow(a.y-b.y,2));
}
int sgn(double x) {
if (fabs(x) < eps) return 0;
if (x > 0) return 1;
return -1;
}
double xmult(Point s, Point e, Point b) {
return (s-b) ^ (e-b);
}
bool seg_inter_line(Point s, Point e, Seg l) {
double v1 = xmult(s, e, l.s), v2 = xmult(s, e, l.e);
return sgn(v1) * sgn(v2) < 0;
}
bool check(Point s, Point e, int l, int r) {
for (int i = l; i < r; ++i) {
for (int j = 0; j < 3; ++j) {
if (seg_inter_line(s, e, wall[i][j])) return false;
}
}
return true;
}
void build(Point e, int i, int j) {
if (check(point[0][0], e, 1, i)) {
dist[0][id(i,j)] = dist[id(i,j)][0] = euler_dist(point[0][0], point[i][j]);
return;
}
for (int k = 1; k < i; ++k) {
for (int t = 0; t < 4; ++t) {
if (check(point[k][t], e, k+1, i)) {
dist[id(k,t)][id(i,j)] = dist[id(i,j)][id(k,t)] = euler_dist(point[k][t], point[i][j]);
}
}
}
}
int n;
void work() {
point[0][0] = Point(0, 5); point[n+1][0] = Point(10, 5);
for (int i = 0; i < 100; ++i) for (int j = i+1; j < 100; ++j) dist[i][j] = dist[j][i] = inf;
for (int i = 1; i <= n; ++i) {
double x,y1,y2,y3,y4;
scanf("%lf%lf%lf%lf%lf", &x, &y1, &y2, &y3, &y4);
point[i][0] = Point(x, y1), point[i][1] = Point(x, y2),
point[i][2] = Point(x, y3), point[i][3] = Point(x, y4);
wall[i][0] = Seg(Point(x, 0), point[i][0]),
wall[i][1] = Seg(point[i][1], point[i][2]),
wall[i][2] = Seg(point[i][3], Point(x, 10));
for (int j = 0; j < 4; ++j) build(point[i][j], i, j);
}
build(point[n+1][0], n+1, 0);
int tot = 4*n+2;
for (int k = 0; k < tot; ++k) {
for (int i = 0; i < tot; ++i) {
for (int j = i+1; j < tot; ++j) {
if (i == k || j == k) continue;
if (dist[i][k] + dist[k][j] < dist[i][j]) {
dist[i][j] = dist[j][i] = dist[i][k] + dist[k][j];
}
}
}
}
printf("%.2f
", dist[0][tot-1]);
}
int main() {
scanf("%d", &n);
work();
return 0;
}