zoukankan      html  css  js  c++  java
  • cuda apt install

    Hardware requirements

    The following GPU-enabled devices are supported:

    • NVIDIA® GPU card with CUDA® architectures 3.5, 5.0, 6.0, 7.0, 7.5, 8.0 and higher than 8.0. See the list of CUDA®-enabled GPU cards.
    • For GPUs with unsupported CUDA® architectures, or to avoid JIT compilation from PTX, or to use different versions of the NVIDIA® libraries, see the Linux build from source guide.
    • Packages do not contain PTX code except for the latest supported CUDA® architecture; therefore, TensorFlow fails to load on older GPUs when CUDA_FORCE_PTX_JIT=1 is set. (See Application Compatibility for details.)

    Note: The error message "Status: device kernel image is invalid" indicates that the TensorFlow package does not contain PTX for your architecture. You can enable compute capabilities by building TensorFlow from source.

    Software requirements

    The following NVIDIA® software must be installed on your system:

    Linux setup

    The apt instructions below are the easiest way to install the required NVIDIA software on Ubuntu. However, if building TensorFlow from source, manually install the software requirements listed above, and consider using a -devel TensorFlow Docker image as a base.

    Install CUPTI which ships with the CUDA® Toolkit. Append its installation directory to the $LD_LIBRARY_PATH environmental variable:

     
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
    

    Install CUDA with apt

    This section shows how to install CUDA® 10 (TensorFlow >= 1.13.0) on Ubuntu 16.04 and 18.04. These instructions may work for other Debian-based distros.

    Caution: Secure Boot complicates installation of the NVIDIA driver and is beyond the scope of these instructions.

    Ubuntu 18.04 (CUDA 11.0)

     
    # Add NVIDIA package repositories
    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
    sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
    sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
    sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
    sudo apt-get update

    wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb


    sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
    sudo apt-get update

    # Install NVIDIA driver
    sudo apt-get install --no-install-recommends nvidia-driver-450
    # Reboot. Check that GPUs are visible using the command: nvidia-smi

    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
    sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
    sudo apt-get update

    # Install development and runtime libraries (~4GB)
    sudo apt-get install --no-install-recommends
        cuda-11-0
        libcudnn8=8.0.4.30-1+cuda11.0  
        libcudnn8-dev=8.0.4.30-1+cuda11.0


    # Install TensorRT. Requires that libcudnn8 is installed above.
    sudo apt-get install -y --no-install-recommends libnvinfer7=7.1.3-1+cuda11.0
        libnvinfer-dev=7.1.3-1+cuda11.0
        libnvinfer-plugin7=7.1.3-1+cuda11.0

    Ubuntu 16.04 (CUDA 11.0)

     
    # Add NVIDIA package repositories
    # Add HTTPS support for apt-key
    sudo apt-get install gnupg-curl
    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-ubuntu1604.pin
    sudo mv cuda-ubuntu1604.pin /etc/apt/preferences.d/cuda-repository-pin-600
    sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
    sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/ /"
    sudo apt-get update
    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    sudo apt-get update
    wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
    sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
    sudo apt-get update

    # Install NVIDIA driver
    # Issue with driver install requires creating /usr/lib/nvidia
    sudo mkdir /usr/lib/nvidia
    sudo apt-get install --no-install-recommends nvidia-driver-450
    # Reboot. Check that GPUs are visible using the command: nvidia-smi

    # Install development and runtime libraries (~4GB)
    sudo apt-get install --no-install-recommends
        cuda-11-0
        libcudnn8=8.0.4.30-1+cuda11.0  
        libcudnn8-dev=8.0.4.30-1+cuda11.0


    # Install TensorRT. Requires that libcudnn7 is installed above.
    sudo apt-get install -y --no-install-recommends
        libnvinfer7=7.1.3-1+cuda11.0
        libnvinfer-dev=7.1.3-1+cuda11.0
        libnvinfer-plugin7=7.1.3-1+cuda11.0
        libnvinfer-plugin-dev=7.1.3-1+cuda11.0
  • 相关阅读:
    (一)IOC 容器:【2】@ComponentScan 自动扫描组件&指定扫描规则
    (一)IOC 容器:【11】Aware 注入Spring底层组件
    (一)IOC 容器:【10】@Autowired 自动装配
    (一)IOC 容器:【3】@Scope 设置组件作用域
    (一)IOC 容器:【8】Bean组件的生命周期
    每日日报7月13日
    每日日报7月12日
    每日日报7月11日
    Prism中的WeakEventHandlerManager
    博客开通标记
  • 原文地址:https://www.cnblogs.com/klausage/p/14435274.html
Copyright © 2011-2022 走看看