zoukankan      html  css  js  c++  java
  • poj 3264

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    解题思路;
    求区间最值直接用ST算法就行了。
    模板:
    #include<bits/stdc++.h>
    
    using namespace std;
    
    #define MAXN 50010
    #define Max(x,y) (x>y?x:y)
    #define Min(x,y) (x>y?y:x)
    
    int maxsum[MAXN][20],minsum[MAXN][20];//表示从第i个数起连续2^j个数中的最大值/最小值
    
    void RMQ(int num)
    {
        for(int j=1;j<20;j++)
            for(int i=1;i<=num;i++)
            {
                if(i+(1<<j)-1 <= num)
                {
                    maxsum[i][j]=Max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
                    minsum[i][j]=Min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
                }
            }
    }
    
    int main()
    {
        int i,j,num,t,query;
        while(scanf("%d%d",&num,&query) != EOF)
        {
            for(i=1;i<=num;i++)
            {
                scanf("%d",&maxsum[i][0]);
                minsum[i][0]=maxsum[i][0];
            }
            RMQ(num);
            int st,en,maxl,minl;
            while(query--)
            {
                scanf("%d%d",&st,&en);
                int k=(int)(log(en-st+1)/log(2.0));
                maxl=Max(maxsum[st][k],maxsum[en-(1<<k)+1][k]);
                minl=Min(minsum[st][k],minsum[en-(1<<k)+1][k]);
                printf("%d
    ",maxl-minl);
            }
        }
        return 0;
    }
  • 相关阅读:
    jvm中的热点代码检测机制
    oracle复制表结构和表数据
    sqlserver复制表结构和表数据
    mysql创建和删除唯一索引(unique key)
    sqlserver中的concat()函数
    Cannot find current proxy: Set 'exposeProxy' property on Advised to 'true' to make it available.
    使用AopContxt.currentProxy()方法获取当前代理对象
    poi锁定单元格
    poi设置文本类型
    javascript中的this理解
  • 原文地址:https://www.cnblogs.com/kls123/p/7133664.html
Copyright © 2011-2022 走看看