zoukankan      html  css  js  c++  java
  • CodeForces

    C. Pythagorean Triples
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

    For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.

    Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

    Katya had no problems with completing this task. Will you do the same?

    Input

    The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

    Output

    Print two integers m and k (1 ≤ m, k ≤ 1018), such that nm and k form a Pythagorean triple, in the only line.

    In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

    Examples
    input
    Copy
    3
    output
    4 5
    input
    Copy
    6
    output
    8 10
    input
    Copy
    1
    output
    -1
    input
    Copy
    17
    output
    144 145
    input
    Copy
    67
    output
    2244 2245
    Note

    思路:

    直接跑表:

    #include<bits/stdc++.h>
    using namespace std;
    
    int main()
    {
        for(int i = 1;i <= 100;i ++){
            for(int j = 1;j <= 1000;j++){
                for(int k = j;k <= 1000;k ++){
                    if(i*i==j*j+k*k||i*i==j*j-k*k||i*i==k*k-j*j){
                        cout<<i<<" "<<j<<" "<<k<<endl;
                    }
                }
            }
        }
    }

    跑出:

    由上面的代码可以看出:

    如:

    3 4 5

    4 3 5

    5 12 13

    6 8 10

    奇数都存在一对只相差1的两边,偶数都存在一条相差为2的两边。

    然后脑补了一下规律:

    偶数为: n*n/4 -1, n*n/4+1

    奇数为: n*(n+1)/2 , n*(n+1)+1

    然后就过了。。。

    实现代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    int main()
    {
        ll n;
        cin>>n;
        if(n <= 2)
            cout<<-1<<endl;
        else if((n/2)*2==n){
            cout<<n*n/4-1<<" "<<n*n/4+1<<endl;
        }
        else{
            cout<<(n/2)*(n+1)<<" "<<(n/2)*(n+1)+1<<endl;
        }
    }
  • 相关阅读:
    西电大第十六届程序设计竞赛 A-GRE
    浙南联合训练赛 B-Laptops
    STL之multimap
    Python编程练习:平方值格式化
    Python编程练习:使用 turtle 库完成玫瑰花的绘制
    Python编程练习:简单的闹钟提醒
    Python编程练习:使用 turtle 库完成叠边形的绘制
    Python编程练习:使用 turtle 库完成正方形的绘制
    Python编程练习:使用 turtle 库完成六边形的绘制
    Spark 介绍
  • 原文地址:https://www.cnblogs.com/kls123/p/8552427.html
Copyright © 2011-2022 走看看