zoukankan      html  css  js  c++  java
  • Spark0.9.0机器学习包MLlib-Optimization代码阅读

           基于Spark的一个生态产品--MLlib,实现了经典的机器学算法,源码分8个文件夹,classification文件夹下面包含NB、LR、SVM的实现,clustering文件夹下面包含K均值的实现,linalg文件夹下面包含SVD的实现(稀疏矩阵的表示),recommendation文件夹下面包含als,矩阵分解实现,regression文件夹下面实现了线性回归,L2的线性回归,L1的线性回归,Util文件夹下面包含了可以为各个算法生成toy-data的文件,另外还有一个DataValidators.scala文件,api文件夹下面是PythonMLLibAPI.scala 文件,最后一个也是本文将要讲的optimization--优化算法模块包含Gradient. scala,GradientDescent.scala,Optimizer.scala,Updater.scala4个文件,作为一个scala语言的新手,如文章标题写的一样,只是对四个文件源码进行了粗读,力求搞清楚MLlib的优化算法模块的代码架构是什么样的,实现了哪些算法以及采用了什么并行策略等,关于源码中用到的scala语言特性,等熟悉这门语言后,还需要反复阅读代码。走过、路过的朋友发现文中的错误,也烦请指正,谢谢,下面是阅读过程中的一些理解(注:由于源代码有非常多的注释,为节省空间,本文有选择性的删除了,详细注释请参考源码,另外貌似博客园没有scala语言的插入模板)。
     
    Gradient.scala文件
    第一部分,定义了Gradient 的抽象类
     
     1 package org.apache.spark.mllib.optimization
     2 
     3 import org.jblas.DoubleMatrix
     4 
     5 /**
     6 
     7  * Class used to compute the gradient for a loss function, given a single data point.
     8 
     9  */
    10 
    11   abstract class Gradient extends Serializable {
    12 
    13   /**
    14 
    15    * Compute the gradient and loss given the features of a single data point.
    16 
    17    * @param data - Feature values for one data point. Column matrix of size dx1
    18 
    19    * where d is the number of features.
    20 
    21    * @param label - Label for this data item.
    22 
    23    * @param weights - Column matrix containing weights for every feature.
    24 
    25    * @return A tuple of 2 elements. The first element is a column matrix containing the computed
    26 
    27    * gradient and the second element is the loss computed at this data point.
    28 
    29    */
    30 
    31   def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 
    32 
    33       (DoubleMatrix, Double)
    34 
    35 }

           可以从上面的注释上看出compute的参数data是一个样本的特征(d*1维度),label就是一个double型变量,该数据点(a single data point)的标签,weights就是特征变量的回归系数也是d*1维度,该函数返回2个东西,第1个是该样本点下计算的梯度,第2个该样本点下的损失loss

     
    第二部分,Gradient 对三种不同损失函数(Log-Loss, LeastSquares -Loss,Hinge-Loss)的派生类
     
    针对log-loss损失函数,重写抽象类的compute函数
     1 /**
     2 
     3  * Compute gradient and loss for a logistic loss function, as used in binary classification.
     4 
     5  * See also the documentation for the precise formulation.
     6 
     7  */
     8 
     9 class LogisticGradient extends Gradient {
    10 
    11   override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 
    12 
    13       (DoubleMatrix, Double) = {
    14 
    15     val margin: Double = -1.0 * data.dot(weights)
    16 
    17     val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label
    18 
    19     val gradient = data.mul(gradientMultiplier)
    20 
    21     val loss =
    22 
    23       if (label > 0) {
    24 
    25         math.log(1 + math.exp(margin))
    26 
    27       } else {
    28 
    29         math.log(1 + math.exp(margin)) - margin
    30 
    31       }
    32 
    33     (gradient, loss)
    34 
    35   }
    36 
    37 }

           我们知道对于log-loss的表达式loss=-[y*log(g(wx))+(1-y)*log(1-g(wx))], 其中g(wx)=1/(1+exp(-wx)),二分类(0,1),对这个loss进行求w偏导,d(loss)/d(w)=[g(wx)-y] * x  (为书写方便,用d代表偏导的符号了),具体的表达式推导请移步http://www.cnblogs.com/kobedeshow/p/3340240.html

           结合上面代码,margin得到-wx(不明白为什么取margin的名字,函数间隔?但是函数间隔也是y*g(wx)呀),接着gradientMultiplier是求上面梯度公式的左边,gradient 就是该点的梯度,最后求loss,当label=1的时候,上面的log-loss表达式=-[1*log(g(wx))]=-log[1/(1+exp(-wx)]=log(1+exp(margin)),当label=0的时候,上面的log-loss表达式=-[log(1-g(wx))]=-[log(1-1/(1+exp(-wx)))]=-log[exp(-wc)/(1+exp(-wx))]=log(1+exp(-wx))-wc= log(1+exp(margin)) -margin
     
    针对leastsquares-loss损失函数,重写抽象类的compute函数
     1 /**
     2 
     3  * Compute gradient and loss for a Least-squared loss function, as used in linear regression.
     4 
     5  * This is correct for the averaged least squares loss function (mean squared error)
     6 
     7  * L = 1/n ||A weights-y||^2
     8 
     9  * See also the documentation for the precise formulation.
    10 
    11  */
    12 
    13 class LeastSquaresGradient extends Gradient {
    14 
    15   override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix): 
    16 
    17       (DoubleMatrix, Double) = {
    18 
    19     val diff: Double = data.dot(weights) - label
    20 
    21     val loss = diff * diff
    22 
    23     val gradient = data.mul(2.0 * diff)
    24 
    25     (gradient, loss)
    27   }
    28 
    29 }
             leastsquares-loss的表达式 如注释所示:L = 1/n ||A weights-y||^2,这里n=1,文中代码的变量diff,就是f(wx)-y的值,损失loss=diff*diff,梯度就是data.mul(2.0 * diff),注意.mul是DoubleMatrix(jblas)的一个方法,是元素跟矩阵的点乘,.mull是矩阵跟矩阵的乘法,.dot是向量的内积
     
    针对hinge-loss损失函数,重写抽象类的compute函数
     1 /**
     2 
     3  * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification.
     4 
     5  * See also the documentation for the precise formulation.
     6 
     7  * NOTE: This assumes that the labels are {0,1}
     8 
     9  */
    10 
    11 class HingeGradient extends Gradient {
    12 
    13   override def compute(data: DoubleMatrix, label: Double, weights: DoubleMatrix):
    14 
    15       (DoubleMatrix, Double) = {
    16 
    17     val dotProduct = data.dot(weights)
    18 
    19     // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x)))
    20 
    21     // Therefore the gradient is -(2y - 1)*x
    22 
    23     val labelScaled = 2 * label - 1.0
    24 
    25     if (1.0 > labelScaled * dotProduct) {
    26 
    27       (data.mul(-labelScaled), 1.0 - labelScaled * dotProduct)
    28 
    29     } else {
    30 
    31       (DoubleMatrix.zeros(1, weights.length), 0.0)
    32 
    33     }
    35   }
    37 }

           hinge-loss的二分类(-1,1)的表达式是max(0,1- y * f(x)),代码中映射到(0,1),变成max(0, 1 - (2y – 1) (f(x))),这时候当样本错分的时候(也就是labelScaled * dotProduct<1),梯度是data.mul(-labelScaled),损失是1-labelScaled * dotProduct

     
    Updater.scala文件
    第一部分,定义了Updater 的抽象类
     1 /**
     2 
     3  * Class used to perform steps (weight update) using Gradient Descent methods.
     4 
     5  * For general minimization problems, or for regularized problems of the form
     6 
     7  * min L(w) + regParam * R(w),
     8 
     9  * the compute function performs the actual update step, when given some
    10 
    11  * (e.g. stochastic) gradient direction for the loss L(w),
    12 
    13  * and a desired step-size (learning rate).
    14 
    15  *
    16 
    17  * The updater is responsible to also perform the update coming from the
    18 
    19  * regularization term R(w) (if any regularization is used).
    20 
    21  */
    22 
    23 abstract class Updater extends Serializable {
    24 
    25   /**
    26 
    27    * Compute an updated value for weights given the gradient, stepSize, iteration number and
    28 
    29    * regularization parameter. Also returns the regularization value regParam * R(w)
    30 
    31    * computed using the *updated* weights.
    32 
    33    * @param weightsOld - Column matrix of size dx1 where d is the number of features.
    34 
    35    * @param gradient - Column matrix of size dx1 where d is the number of features.
    36 
    37    * @param stepSize - step size across iterations
    38 
    39    * @param iter - Iteration number
    40 
    41    * @param regParam - Regularization parameter
    42 
    43    *
    44 
    45    * @return A tuple of 2 elements. The first element is a column matrix containing updated weights,
    46 
    47    * and the second element is the regularization value computed using updated weights.
    48 
    49    */
    50 
    51   def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix, stepSize: Double, iter: Int,
    52 
    53       regParam: Double): (DoubleMatrix, Double)
    54 
    55 }


          compute的参数weightsOld是更新前的变量回归系数(d*1维)gradient是根据指定的损失函数计算出的当前梯度stepSize 是步长也就是学习速率,iter 迭代次数,regParam 是正则参数值,该函数返回2个东西,第1个是更新后的回归系数,第2个是更新后的regParam * R(w) 值。

     
    第二部分,Updater 三种不同正则方式(无正则,L1,L2)的派生类
     
    针对无正则 ,重写抽象类的compute函数
     1 /**
     2 
     3  * A simple updater for gradient descent *without* any regularization.
     4 
     5  * Uses a step-size decreasing with the square root of the number of iterations.
     6 
     7  */
     8 
     9 class SimpleUpdater extends Updater {
    10 
    11   override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix,
    12 
    13       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = {
    14 
    15     val thisIterStepSize = stepSize / math.sqrt(iter)
    16 
    17     val step = gradient.mul(thisIterStepSize)
    18 
    19     (weightsOld.sub(step), 0)
    20 
    21   }
    22 
    23 }


          对于梯度下降算法,w -= a*gradient,a是学习率对应代码里面的thisIterStepSize(相当于一开始步长很大,随迭代次数,增加而减小),式子中的a*gradient对应着step,最后,weightsNew=weightsOld.sub(step)

     
    针对L1正则 ,重写抽象类的compute函数
     1 /**
     2 
     3  * Updater for L1 regularized problems.
     4 
     5  * R(w) = ||w||_1
     6 
     7  * Uses a step-size decreasing with the square root of the number of iterations.
     8 
     9  * Instead of subgradient of the regularizer, the proximal operator for the
    10 
    11  * L1 regularization is applied after the gradient step. This is known to
    12 
    13  * result in better sparsity of the intermediate solution.
    14 
    15  * The corresponding proximal operator for the L1 norm is the soft-thresholding
    16 
    17  * function. That is, each weight component is shrunk towards 0 by shrinkageVal.
    18 
    19  * If w > shrinkageVal, set weight component to w-shrinkageVal.
    20 
    21  * If w < -shrinkageVal, set weight component to w+shrinkageVal.
    22 
    23  * If -shrinkageVal < w < shrinkageVal, set weight component to 0.
    24 
    25  * Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal)
    26 
    27  */
    28 
    29 class L1Updater extends Updater {
    30 
    31   override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix,
    32 
    33       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = {
    34 
    35     val thisIterStepSize = stepSize / math.sqrt(iter)
    36 
    37     val step = gradient.mul(thisIterStepSize)
    38 
    39     // Take gradient step
    40 
    41     val newWeights = weightsOld.sub(step)
    42 
    43     // Apply proximal operator (soft thresholding)
    44 
    45     val shrinkageVal = regParam * thisIterStepSize
    46 
    47     (0 until newWeights.length).foreach { i =>
    48 
    49       val wi = newWeights.get(i)
    50 
    51       newWeights.put(i, signum(wi) * max(0.0, abs(wi) - shrinkageVal))
    52 
    53     }
    54 
    55     (newWeights, newWeights.norm1 * regParam)
    56 
    57   }
    58 
    59 }


           加了正则项之后,前几步都一样,然后关键是对后面的处理(后面的理论暂时还不太理解,可以参考http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/),还是说代码步骤吧,变量shrinkageVal =regParam * thisIterStepSize(注意:要*thisIterStepSize,因为w -= a*gradient  里面的gradient包括L(w)还包括正则的R(w)),然后对加正则前更新的newWeights,上遍历每一个元素,直接对该元素赋值newWeights.put(i, signum(wi) * max(0.0, abs(wi) - shrinkageVal)),对应着代码注释的红体部分。

     
    针对L2正则 ,重写抽象类的compute函数
     1 /**
     2 
     3  * Updater for L2 regularized problems.
     4 
     5  * R(w) = 1/2 ||w||^2
     6 
     7  * Uses a step-size decreasing with the square root of the number of iterations.
     8 
     9  */
    10 
    11 class SquaredL2Updater extends Updater {
    12 
    13   override def compute(weightsOld: DoubleMatrix, gradient: DoubleMatrix,
    14 
    15       stepSize: Double, iter: Int, regParam: Double): (DoubleMatrix, Double) = {
    16 
    17     val thisIterStepSize = stepSize / math.sqrt(iter)
    18 
    19     val step = gradient.mul(thisIterStepSize)
    20 
    21     // add up both updates from the gradient of the loss (= step) as well as
    22 
    23     // the gradient of the regularizer (= regParam * weightsOld)
    24 
    25     val newWeights = weightsOld.mul(1.0 - thisIterStepSize * regParam).sub(step)
    26 
    27     (newWeights, 0.5 * pow(newWeights.norm2, 2.0) * regParam)
    28 
    29   }
    30 
    31 }

           L2正则项加入后,损失函数变为loss1=loss+1/2 *regParam* ||w||^2,按梯度下降的更新公式:w=w-学习速率 * (d(loss1)/d(w));后面的d(loss1)=d(loss1)/d(w) + d(1/2*regParam*||w||^2) / d(w)了,那么更新公式变成了w=w-学习速率*d(loss)/d(w)-学习速率*d(1/2*regParam*||w|| ^2)/d(w)=(1-学习速率*regParam)*w-学习速率*d(loss)/d(w),这个也就对应了第25行代码的意思

     
    GradientDescent.scala文件
    第一部分,定义了GradientDescent 类
      1 package org.apache.spark.mllib.optimization
      2 
      3 import org.apache.spark.Logging
      4 
      5 import org.apache.spark.rdd.RDD
      6 
      7 import org.jblas.DoubleMatrix
      8 
      9 import scala.collection.mutable.ArrayBuffer
     10 
     11 /**
     12 
     13  * Class used to solve an optimization problem using Gradient Descent.
     14 
     15  * @param gradient Gradient function to be used.
     16 
     17  * @param updater Updater to be used to update weights after every iteration.
     18 
     19  */
     20 
     21 class GradientDescent(var gradient: Gradient, var updater: Updater)
     22 
     23   extends Optimizer with Logging
     24 
     25 {
     26 
     27   private var stepSize: Double = 1.0
     28 
     29   private var numIterations: Int = 100
     30 
     31   private var regParam: Double = 0.0
     32 
     33   private var miniBatchFraction: Double = 1.0
     34 
     35   /**
     36 
     37    * Set the initial step size of SGD for the first step. Default 1.0.
     38 
     39    * In subsequent steps, the step size will decrease with stepSize/sqrt(t)
     40 
     41    */
     42 
     43   def setStepSize(step: Double): this.type = {
     44 
     45     this.stepSize = step
     46 
     47     this
     48 
     49   }
     50 
     51   /**
     52 
     53    * Set fraction of data to be used for each SGD iteration.
     54 
     55    * Default 1.0 (corresponding to deterministic/classical gradient descent)
     56 
     57    */
     58 
     59   def setMiniBatchFraction(fraction: Double): this.type = {
     60 
     61     this.miniBatchFraction = fraction
     62 
     63     this
     64 
     65   }
    
     66 
     67   /**
     68 
     69    * Set the number of iterations for SGD. Default 100.
     70 
     71    */
     72 
     73   def setNumIterations(iters: Int): this.type = {
     74 
     75     this.numIterations = iters
     76 
     77     this
     78 
     79   }
     80 
     81   /**
     82 
     83    * Set the regularization parameter. Default 0.0.
     84 
     85    */
     86 
     87   def setRegParam(regParam: Double): this.type = {
     88 
     89     this.regParam = regParam
     90 
     91     this
     92 
     93   }
     94 
     95   /**
     96 
     97    * Set the gradient function (of the loss function of one single data example)
     98 
     99    * to be used for SGD.
    100 
    101    */
    102 
    103   def setGradient(gradient: Gradient): this.type = {
    104 
    105     this.gradient = gradient
    106 
    107     this
    108 
    109   }
    110 
    111   /**
    112 
    113    * Set the updater function to actually perform a gradient step in a given direction.
    114 
    115    * The updater is responsible to perform the update from the regularization term as well,
    116 
    117    * and therefore determines what kind or regularization is used, if any.
    118 
    119    */
    120 
    121   def setUpdater(updater: Updater): this.type = {
    122 
    123     this.updater = updater
    124 
    125     this
    126 
    127   }
    128 
    129   def optimize(data: RDD[(Double, Array[Double])], initialWeights: Array[Double])
    130 
    131     : Array[Double] = {
    132 
    133     val (weights, stochasticLossHistory) = GradientDescent.runMiniBatchSGD(
    134 
    135         data,
    136 
    137         gradient,
    138 
    139         updater,
    140 
    141         stepSize,
    142 
    143         numIterations,
    144 
    145         regParam,
    146 
    147         miniBatchFraction,
    148 
    149         initialWeights)
    150 
    151     weights
    152 
    153   }
    154 
    155 }

           该类的输入有2个参数,第一个是前面都是gradient对应了用户需要选哪个损失函数计算梯度,第二个updater 对应了用户选择哪一种正则方式,程序开头都设置了stepSize,numIterations,regParam,miniBatchFraction的默认值最后一个函数optimize,输入RDD数据,跟初始的回归系数weight,返回weights权重

     
    第二部分,定义了object GradientDescent 
      1 // Top-level method to run gradient descent.
      2 
      3 object GradientDescent extends Logging {
      4 
      5   /**
      6 
      7    * Run stochastic gradient descent (SGD) in parallel using mini batches.
      8 
      9    * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data
     10 
     11    * in order to compute a gradient estimate.
     12 
     13    * Sampling, and averaging the subgradients over this subset is performed using one standard
     14 
     15    * spark map-reduce in each iteration.
     16 
     17    *
     18 
     19    * @param data - Input data for SGD. RDD of the set of data examples, each of
     20 
     21    * the form (label, [feature values]).
     22 
     23    * @param gradient - Gradient object (used to compute the gradient of the loss function of
     24 
     25    * one single data example)
     26 
     27    * @param updater - Updater function to actually perform a gradient step in a given direction.
     28 
     29    * @param stepSize - initial step size for the first step
     30 
     31    * @param numIterations - number of iterations that SGD should be run.
     32 
     33    * @param regParam - regularization parameter
     34 
     35    * @param miniBatchFraction - fraction of the input data set that should be used for
     36 
     37    * one iteration of SGD. Default value 1.0.
     38 
     39    *
     40 
     41    * @return A tuple containing two elements. The first element is a column matrix containing
     42 
     43    * weights for every feature, and the second element is an array containing the
     44 
     45    * stochastic loss computed for every iteration.
     46 
     47    */
     48 
     49   def runMiniBatchSGD(
     50 
     51     data: RDD[(Double, Array[Double])],
     52 
     53     gradient: Gradient,
     54 
     55     updater: Updater,
     56 
     57     stepSize: Double,
     58 
     59     numIterations: Int,
     60 
     61     regParam: Double,
     62 
     63     miniBatchFraction: Double,
     64 
     65     initialWeights: Array[Double]) : (Array[Double], Array[Double]) = {
     66 
     67     val stochasticLossHistory = new ArrayBuffer[Double](numIterations)
     68 
     69     val nexamples: Long = data.count()
     70 
     71     val miniBatchSize = nexamples * miniBatchFraction
     72 
     73     // Initialize weights as a column vector
     74 
     75     var weights = new DoubleMatrix(initialWeights.length, 1, initialWeights:_*)
     76 
     77     var regVal = 0.0
     78 
     79     for (i <- 1 to numIterations) {
     80 
     81       // Sample a subset (fraction miniBatchFraction) of the total data
     82 
     83       // compute and sum up the subgradients on this subset (this is one map-reduce)
     84 
     85       val (gradientSum, lossSum) = data.sample(false, miniBatchFraction, 42 + i).map {
     86 
     87         case (y, features) =>
     88 
     89           val featuresCol = new DoubleMatrix(features.length, 1, features:_*)
     90 
     91           val (grad, loss) = gradient.compute(featuresCol, y, weights)
     92 
     93           (grad, loss)
     94 
     95       }.reduce((a, b) => (a._1.addi(b._1), a._2 + b._2))
     96 
     97       /**
     98 
     99        * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration
    100 
    101        * and regVal is the regularization value computed in the previous iteration as well.
    102 
    103        */
    104 
    105       stochasticLossHistory.append(lossSum / miniBatchSize + regVal)
    106 
    107       val update = updater.compute(
    108 
    109         weights, gradientSum.div(miniBatchSize), stepSize, i, regParam)
    110 
    111       weights = update._1
    112 
    113       regVal = update._2
    114 
    115     }
    116 
    117     logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
    118 
    119       stochasticLossHistory.takeRight(10).mkString(", ")))
    120 
    121     (weights.toArray, stochasticLossHistory.toArray)
    122 
    123   }
    124 
    125 }

           该object进行了整个的优化过程,输出是回归系数跟每次迭代的loss,这里实现的是minibatch-sgd的并行,前面的var weights = new DoubleMatrix(initialWeights.length, 1, initialWeights:_*),这个操作是把array型的搞成矩阵型的d*1维矩阵。关键代码for (i <- 1 to numIterations) 里面的,首先data是spark的RDD数据类型,data.sample方法第一个参数指是否又放回的抽样,第二个是抽样比例,第三个是随机种子,data.sample返回抽样后的RDD,然后RDD.map,RDD.reduce操作就是一个完整的map-reduce操作。接着,把得到的gradientSum除以miniBatchSize,扔到updater里面去更新梯度,关于minibatch-sgd的并行策略可以参考我之前的文章《常见数据挖掘算法的Map-Reduce策略(2)》里面的algorithm3。

  • 相关阅读:
    MySQL优化—工欲善其事,必先利其器(2)
    MySQL优化—工欲善其事,必先利其器之EXPLAIN
    Linux工具安装和常用配置
    .Net Core配置文件介绍
    Centos7上开发.Net Core项目
    VMWare的host-only/bridged/NAT连接图文介绍
    Quartz.net 3.x使用总结(二)——Db持久化和集群
    Vuex实现状态管理
    Quartz.net 3.x使用总结(一)——简单使用
    C#获取根目录的方法总结
  • 原文地址:https://www.cnblogs.com/kobedeshow/p/3622997.html
Copyright © 2011-2022 走看看