zoukankan      html  css  js  c++  java
  • 第九节 模型选择和调优

    # 交叉验证:将拿到的训练数据,分为训练集和验证集,以下图为例:将数据分成四份,其中一份作为验证集,然后经过5次测试,每次更换不同的验证集,即得到5组模型的结果,取平均值作为最终结果,又称4折交叉验证,一般经验都是做10折交叉验证
    
    模型调优最主要的是在业务方向进行,大概占到80%的贡献度,而参数调优对模型的贡献度只在5%左右
    # 网格搜索:即超参数搜索,有很多参数是需要手动指定的(如K-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证进行评估。最后选出最优参数组合建立模型
    
    '''
    from sklearn.model_selection import GridSearchCV  # 交叉验证-网格搜索API
    gcv = GridSearchCV(estimator='', param_grid=None, cv=None)
    对估计器的指定参数值进行详尽搜索
    estimator:估计器对象
    param_grid:估计器参数,字典形式
    cv:指定几折交叉验证
    fit:输入训练数据
    score:准确率
    结果分析:
        best_score_:在交叉验证中验证的最好结果
        best_estimator_:最好的参数模型
        cv_results_:每次交叉验证后的验证集准确率结果和训练集准确率结果
    '''
    
    # 对K-近邻算法进行调优
    from sklearn.neighbors import  KNeighborsClassifier
    import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import GridSearchCV
    
    def knncls():
        """K-近邻预测用户签到位置,数据来源:https://www.kaggle.com/c/facebook-v-predicting-check-ins/data"""
        # 读取数据
        data = pd.read_csv(r"")
        # 处理数据
    
        # 1.缩小数据,查询数据筛选
        data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75")
    
        # 2.处理时间数据,将时间戳转换成日期格式,unit转换单位s
        time_value = pd.to_datetime(data['time'], unit='s')
    
        # 3.把日期格式转换成字典格式
        time_value = pd.DatetimeIndex(time_value)
    
        # 4.构造一些特征
        data['day'] = time_value.day
        data['hour'] = time_value.hour
        data['weekday'] = time_value.weekday
    
        # 5.把时间戳特征删除
        data = data.drop(['time'], axis=1)
    
        # 6.把签到数少于n个目标位置删除
        place_count = data.groupby('place_id').count()
        tf = place_count[place_count.row_id>3].reset_index()
        data = data[data['place_id'].isin(tf.place_id)]
    
        # 7.取出数据当做的特征值(x)和目标值(y)
        y = data['place_id']
        x = data.drop(['place_id'], axis=1)
    
        # 8.将数据分割成训练集和测试集
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
    
        # 特征工程(标准化)
        std = StandardScaler()
        # 对训练集和测试集的特征值进行标准化
        x_train = std.fit_transform(x_train)
        x_test = std.transform(x_test)
    
        # 进行算法流程,n_neighbors取多少个最近邻样本进行类别统计
        knn = KNeighborsClassifier()
    
        # 构造网格搜索需要调优的参数
        param = {"n_neighbors":[3, 5, 7, 10]}
        # 进行网格搜索
        gcv = GridSearchCV(estimator=knn, param_grid=param, cv=10)
        gcv.fit(x_train, y_train)
        print('在测试集上的准确率:', gcv.score(x_test, y_test))
        print('在交叉验证中最好的结果:', gcv.best_score_)
        print('选择的最好的模型是:', gcv.best_estimator_)
    
    if __name__ == "__main__":
        knncls()

     

  • 相关阅读:
    Codeforces Round #657 (Div. 2) 题解
    洛谷 P2765 魔术球问题 (最小路径覆盖 or 贪心)
    洛谷 P2472 蜥蜴 (最大流)
    Codeforces Round #665 (Div. 2) 题解
    洛谷 P1231 教辅的组成 (三分图匹配,裂点)
    USACO5.4 奶牛的电信Telecowmunication (最小割,割边转割点)
    有关网络流的一些板子题
    洛谷 p2756 飞行员配对方案问题(最大流,二分图匹配)
    JSON.toJSONString中序列化空字符串遇到的坑
    关于mysql自动备份的小方法
  • 原文地址:https://www.cnblogs.com/kogmaw/p/12574172.html
Copyright © 2011-2022 走看看