SparkMLlib基础内容
(一),多种数据类型
1.1 本地向量集
def testVetor: Unit ={ val vd:Vector=Vectors.dense(2,3,6) println(vd(2))//输出结果为6,稠密型数据集下标从0开始依次递增 val vr:Vector=Vectors.sparse(10,Array(1,3,5,8),Array(1,2,3,4)) //sparse数据集为一个矩阵中的指定位置复制,其余位置默认为0 println(vr(8))//输出为2,即指定的下标的值 println(vr(4))//输出为0 }
1.2向量标签使用
def testLablePoint: Unit ={ val vd:Vector=Vectors.dense(2,3,6) val lp=LabeledPoint(1,vd) println(lp.label)//输出为1 println(lp.features)//输出为[2.0,3.0,6.0] val vr:Vector=Vectors.sparse(10,Array(1,3,5,8),Array(1,2,3,4)) //sparse数据集为一个矩阵中的指定位置复制,其余位置默认为0 val lp2=LabeledPoint(2,vr) println(lp2.label)//输出为2 println(lp2.features)//输出为(10,[1,3,5,8],[1.0,2.0,3.0,4.0]) }
svm文件加载
/*文本格式 (label,index:value) 7 1:1 2:1 3:1 4:9 5:2 6:1 7:2 8:0 9:0 10:1 11:3 8 1:4 2:4 3:0 4:3 5:4 6:2 7:1 8:3 9:0 10:0 11:0*/ val svmFile=MLUtils.loadLibSVMFile(sc,"svmFile") svmFile.foreach(println(_))//分解成sparse向量格式 /* (7.0,(11,[0,1,2,3,4,5,6,7,8,9,10],[1.0,1.0,1.0,9.0,2.0,1.0,2.0,0.0,0.0,1.0,3.0])) (8.0,(11,[0,1,2,3,4,5,6,7,8,9,10],[4.0,4.0,0.0,3.0,4.0,2.0,1.0,3.0,0.0,0.0,0.0])) */
1.3 矩阵的使用
本地矩阵
val mx= Matrices.dense(2,3,Array(1,2,3,4,5,6))//将数组转为2行3列 println(mx) /*Result 1.0 3.0 5.0 2.0 4.0 6.0 */
1.4 分布式矩阵
1.4.1 行矩阵
/* 1.0 3.0 5.0 2.0 4.0 6.0 *? val rdd=sc.textFile("test").map(_.split(" ").map(_.toDouble)) .map(line=>Vectors.dense(line)) val row=new RowMatrix(rdd) println(row.numRows())//2 println(row.numCols())//3
1.4.2 带索引的行矩阵
val rdd=sc.textFile("test").map(_.split(" ").map(_.toDouble)) .map(line=>Vectors.dense(line)).map((vd) => new IndexedRow(vd.size,vd)) val indexRow=new IndexedRowMatrix(rdd) indexRow.rows.foreach(println(_)) /*result IndexedRow(3,[1.0,3.0,5.0]) IndexedRow(3,[2.0,4.0,6.0]) */
1.4.3 坐标矩阵
val rdd=sc.textFile("test").map(_.split(" ").map(_.toDouble)) .map(value => (value(0).toLong,value(1).toLong,value(2))) .map(value2 =>new MatrixEntry(value2._1,value2._2,value2._3)) val comRow=new CoordinateMatrix(rdd) comRow.entries.foreach(println(_)) /* MatrixEntry(1,3,5.0) MatrixEntry(2,4,6.0) */
(二),数理统计概念
皮尔逊相关系数:https://segmentfault.com/q/1010000000094674
val Data_test=sc.parallelize(Seq(1,2,3,4,5,6)).map(_.toDouble) .map(x => Vectors.dense(x)) val Data_test2=sc.parallelize(Seq(1,2,3,4,5,6)).map(_.toDouble) .map(x =>LabeledPoint(x,Vectors.dense(x)) ) val stat=Statistics.colStats(Data_test) println(stat.normL1)//曼哈顿距离 println(stat.normL2)//欧几里德距离 println(stat.variance)//平均值 val correlation=Statistics.corr(Data_test)//皮尔逊相关系数 println(correlation) val vd=Statistics.chiSqTest(Data_test2)//卡方检验 vd.foreach(println(_)) /*results [21.0] [9.539392014169456] [3.5] 1.0 Chi squared test summary: method: pearson degrees of freedom = 25 statistic = 30.000000000000014 pValue = 0.22428900483440284 No presumption against null hypothesis: the occurrence of the outcomes is statistically independent.. */