Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8651 Accepted Submission(s): 3877
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Recommend
JGShining
深搜,简单题:
看代码,还可以优化,尤其是判断素数的时候,可以用筛选法,或者直接列出40内的素数:
#include<stdio.h>
#include<cmath>
#include<string.h>
int a[21];
int used[21];
int n;
bool prime(int n)
{
int m=(int)sqrt(n);
int i;
for(i=2;i<=m;i++)
if(n%i==0)break;
if(i>m)return true;
else return false;
}
void dfs(int k)
{
if(k==n+1)
{
if(prime(a[1]+a[n]))
{
for(int i=1;i<n;i++)printf("%d ",a[i]);
printf("%d\n",a[n]);
}
}
else
{
for(int i=1;i<=n;i++)
{
if(used[i]==0&&prime(i+a[k-1]))
{
used[i]=1;
a[k]=i;
dfs(k+1);
used[i]=0;
}
}
}
}
int main()
{
int i=1;
while(scanf("%d",&n)!=EOF)
{
memset(used,0,sizeof(used));
a[1]=1;used[1]=1;
printf("Case %d:\n",i++);
dfs(2);
printf("\n");
}
return 0;
}