zoukankan      html  css  js  c++  java
  • A Strange Dog called Vagaa II (矩阵相乘)

    http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1100

    矩阵相乘法

    A Strange Dog called Vagaa II

    Time Limit: 1000 MS

    Memory Limit: 65536 K

     

    Total Submit: 105(32 users)

    Total Accepted: 29(23 users)

    Special Judge: No

     

    Description

    Leyni has a strange dog called Vagaa and it is just born.(We call it 0 years old.)

    1.Vagaa will lay a small dog each year till it is 2 years old.(It will lay when it's 2 years old and won't lay when it's 3 years old.)
    2.Vagaa will live forever.(Because it believes in ChunGe.)
    3.The same as its child.(Its child will lay and live as the same as Vagaa.)

     

    For example,
    0 year : 1 dog. (Vagaa(0 years old).)
    1 year : 2 dog. (Vagaa(1 years old) and its child(0 years old).)
    2 year : 4 dog. (Vagaa(2) and its child(1) will lay 2 dogs(0).)
    3 year : 7 dog. (Vagaa(3) won't lay. Its child(2) will lay 1 dog(0). The other 2 dogs(1) will lay 2 dogs(0).)
    4 year : 12 dog. (...)

     

    Now, Leyni want to know how many dogs he has in total when Vagaa is N years old.

    Input

    There are multiple test cases. The first line of input is an integer T indicating the number of test cases. Then T test cases follow.
    For each test case:
    Line 1. An Integer N.(0≤N≤109)

    Output

    For each test case:
    Line 1. Output the number of dogs Leyni has in total MOD 10007.

    Sample Input

    5
    0
    1
    2
    3
    4

    Sample Output

    1
    2
    4
    7
    12

    Author

    哈理工2011春季校赛

    这道题目的递推公式就是a[n]=a[n-1]+a[n-2]+1;

    类似于斐波那契数列。

    但是数值比较大10^9个数是存不下来的。

    故利用了矩阵相乘的便利。

    来实现递推公式

    代码:

    #include<stdio.h>

    #include<math.h>

    int m=10007;

    int A[1][3];

    int B[3][3]={0,1,0,1,1,0,0,1,1};

    int C[3][3];

    void mul(int a[][3],int b[][3],int c[][3])

    {//功能,求出a*b存在c里

        int i,j,h;

        for(i=0;i<3;i++)

         for(j=0;j<3;j++)

        {

           c[i][j]=0;

           for(h=0;h<3;h++)

             c[i][j]+=a[i][h]*b[h][j];

           c[i][j]%=m;

        }

    }

    void qiu(int x,int a[][3])//求出 B 的x次方,存在a里

    {

        int i,j;

        int b[3][3];

        if(x==1)             //x等于1时,直接把B存在a里

        {

            for(i=0;i<3;i++)

             for(j=0;j<3;j++)

               a[i][j]=B[i][j];

            return;

        }

        if(x%2==0)

        {

            qiu(x/2,b);

            mul(b,b,a);

        }

        else

        {

            qiu(x-1,b);

            mul(b,B,a);

        }

    }

    int main()

    {

        int c[3][3];

        int i,j,h,l,p,n,N;

        while(scanf("%d",&N) != EOF)

        while(N--)

        {

           scanf("%d",&p);

           //if(p==0)  printf("1\n");

           //else if(p==1) printf("2\n");

           //else if(p==2) printf("4\n");

          // else if(p==3) printf("7\n");

          // else

          // {

              A[0][0]=0;A[0][1]=1;A[0][2]=1;

              qiu(p+1, C);

              /*for(i=0; i<1; i++)

                for(j=0; j<3; j++)

                {

                   c[i][j] = 0;

                   for(h=0; h<3; h++)

                   c[i][j] += A[i][h] * C[h][j];

                   c[i][j] %= m;

                }*/

              mul(A,C,c);

              n = c[0][0] % m;

              printf("%d\n", n);

          // }

        }

        return 0;

    }

    再贴个小敏敏的代码:

    #include <stdio.h>
    #include <cstring>
    using namespace std;

    int A[3][3] = {0, 0, -1, 1, 0, 0, 0, 1, 2};
    int B[3][3] = {1, 0, 0, 0, 1, 0, 0, 0, 1};
    int C[3][3];

    void mul(int a[3][3], int b[3][3], int c[3][3])
    {
    int i, j, k;
    int f[3][3];

    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    {
    f[i][j] = 0;
    for(k = 0; k < 3; ++k)
    f[i][j] += a[i][k] * b[k][j];
    //f[i][j] %= 10007;
    if(f[i][j]>0) f[i][j]%=10007;
    while(f[i][j]<0)f[i][j]+=10007;
    }
    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    c[i][j] = f[i][j];
    }

    void f(int arr[3][3], int n)
    {
    int a[3][3];
    int i, j, k;
    if(n == 0) return;
    else if(n == 1)
    {
    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    C[i][j] = arr[i][j];
    }
    else if(n == 2)
    {
    mul(arr, arr, C);
    return;
    }
    else
    {
    f(arr, n / 2);
    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    a[i][j] = C[i][j];
    mul(a, a, C);
    if(n&1)
    mul(arr, C, C);
    /*if(n%2==0)
    {
    f(arr,n/2);
    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    a[i][j] = C[i][j];
    mul(a, a, C);
    }
    else
    {
    f(arr,n-1);
    for(i = 0; i < 3; ++i)
    for(j = 0; j < 3; ++j)
    a[i][j] = C[i][j];
    mul(a,arr,C);
    }
    */
    }
    }


    int main()
    {
    int t, n;
    int m;
    int sum;
    int i, j, k;
    int a[3] = {1, 2, 4};
    int arr[3];
    while(scanf("%d", &t) != EOF)
    {
    while(t--)
    {
    scanf("%d", &n);
    if(n == 0)
    printf("1\n");
    else if(n == 1)
    printf("2\n");
    else if(n == 2)
    printf("4\n");
    else
    {
    f(A, n );
    /* for(i = 0; i < 3; ++i)
    {
    for(j = 0; j < 3; ++j)
    printf("%d ", C[i][j]);
    printf("\n");
    }
    */
    memset(arr, 0, sizeof(arr));
    for(j = 0; j < 3; j++)
    for(k = 0; k < 3; k++)
    {
    arr[j] += a[k] * C[k][j];
    arr[j] %= 10007;
    }
    arr[0] %= 10007;
    printf("%d\n", arr[0]);
    }
    }
    }
    return 0;
    }

    这个的公式是用 a[n]=2*a[n-1]-a[n-3];

    其实是一样的


     

  • 相关阅读:
    cull/clip distance example
    Sutherland-Hodgeman多边形裁剪
    OpenCV 脸部跟踪(3)
    人脸识别中的Procruster analysis应用
    卡尔曼滤波的原理说明
    偏导数
    泊松分布E(X^2)
    抽奖概率
    卡尔曼滤波的原理说明
    卡尔曼滤波3
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2412452.html
Copyright © 2011-2022 走看看