zoukankan      html  css  js  c++  java
  • HDU 3480 Division(斜率优化DP)

    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 1672    Accepted Submission(s): 630


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2 3 2 1 2 4 4 2 4 7 10 1
     
    Sample Output
    Case 1: 1 Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     
    Source
     
    Recommend
    zhengfeng
     
     
     
     

    首先从小到大排序。

    然后设 dp[i][j]表示前j个数分成i组的最小花费。

    则 dp[i][j]=min{dp[i-1][k]+(a[j]-a[k+1])^2}  0<k<j;

    利用斜率优化DP,整理下就可以出来了。

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    const int MAXN=10010;
    const int MAXM=5010;
    int a[MAXN];
    int dp[MAXM][MAXN];
    int n,m;
    int q[MAXN];
    int head,tail;
    int DP()
    {
        for(int i=1;i<=n;i++)
          dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
        for(int i=2;i<=m;i++)
        {
            head=tail=0;
            q[tail++]=i-1;
            for(int j=i;j<=n;j++)
            {
                while(head+1<tail)
                {
                    int p1=q[head];
                    int p2=q[head+1];
                    int x1=a[p1+1];
                    int x2=a[p2+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    if((y2-y1)<=2*a[j]*(x2-x1))head++;
                    else break;
                }
                int k=q[head];
                dp[i][j]=dp[i-1][k]+(a[j]-a[k+1])*(a[j]-a[k+1]);
                while(head+1<tail)
                {
                    int p1=q[tail-2];
                    int p2=q[tail-1];
                    int p3=j;
                    int x1=a[p1+1];
                    int x2=a[p2+1];
                    int x3=a[p3+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    int y3=dp[i-1][j]+x3*x3;
                    if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))tail--;
                    else break;
                }
                q[tail++]=j;
            }
        }
        return dp[m][n];
    }
    int main()
    {
       // freopen("in.txt","r",stdin);
       // freopen("out.txt","w",stdout);
        int T;
        scanf("%d",&T);
        int iCase=0;
        while(T--)
        {
            iCase++;
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
               scanf("%d",&a[i]);
            sort(a+1,a+n+1);
            printf("Case %d: %d\n",iCase,DP());
        }
        return 0;
    }

    另外还有四边形不等式优化,还没有非常理解,正在学习中

    /*
    HDU  3840
    C++ 2884ms C++
    
    */
    
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int MAXN=10010;
    const int MAXM=5010;
    
    int a[MAXN];
    
    int s[MAXN][MAXM];
    int dp[MAXN][MAXM];
    int main()
    {
        int n,m;
        int T;
        scanf("%d",&T);
        int iCase=0;
        while(T--)
        {
            iCase++;
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            sort(a+1,a+n+1);
            for(int i=1;i<=n;i++)
            {
                dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
                s[i][1]=1;
            }
    
            for(int k=2;k<=m;k++)
            {
                s[n+1][k]=n-1;
                for(int i=n;i>=k;i--)
                {
                    dp[i][k]=dp[k-1][k-1]+(a[i]-a[k])*(a[i]-a[k]);
                    s[i][k]=k;
                    for(int j=s[i][k-1];j<=s[i+1][k];j++)
                    {
                        int temp=dp[j][k-1]+(a[i]-a[j+1])*(a[i]-a[j+1]);
                        if(temp<dp[i][k])
                        {
                            dp[i][k]=temp;
                            s[i][k]=j;
                        }
                    }
                }
            }
            printf("Case %d: %d\n",iCase,dp[n][m]);
        }
        return 0;
    }
  • 相关阅读:
    csharp: Cyotek.GhostScript.PdfConversion pdf convert image
    csharp: using Acrobat.dll pdf convert images in winform
    机器学习实战---K均值聚类算法
    机器学习实战---决策树CART回归树实现
    机器学习实战---决策树CART简介及分类树实现
    机器学习实战---线性回归(更好的使用正规方程求解)
    机器学习实战---逻辑回归梯度上升(更好的理解sigmoid函数的含义并改进)
    机器学习实战---朴素贝叶斯算法使用K折交叉验证
    机器学习实战---朴素贝叶斯算法
    机器学习实战---决策树ID3算法
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2657902.html
Copyright © 2011-2022 走看看