zoukankan      html  css  js  c++  java
  • HDU 3480 Division(斜率优化DP)

    Division

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
    Total Submission(s): 1672    Accepted Submission(s): 630


    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     
    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     
    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     
    Sample Input
    2 3 2 1 2 4 4 2 4 7 10 1
     
    Sample Output
    Case 1: 1 Case 2: 18
    Hint
    The answer will fit into a 32-bit signed integer.
     
    Source
     
    Recommend
    zhengfeng
     
     
     
     

    首先从小到大排序。

    然后设 dp[i][j]表示前j个数分成i组的最小花费。

    则 dp[i][j]=min{dp[i-1][k]+(a[j]-a[k+1])^2}  0<k<j;

    利用斜率优化DP,整理下就可以出来了。

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    const int MAXN=10010;
    const int MAXM=5010;
    int a[MAXN];
    int dp[MAXM][MAXN];
    int n,m;
    int q[MAXN];
    int head,tail;
    int DP()
    {
        for(int i=1;i<=n;i++)
          dp[1][i]=(a[i]-a[1])*(a[i]-a[1]);
        for(int i=2;i<=m;i++)
        {
            head=tail=0;
            q[tail++]=i-1;
            for(int j=i;j<=n;j++)
            {
                while(head+1<tail)
                {
                    int p1=q[head];
                    int p2=q[head+1];
                    int x1=a[p1+1];
                    int x2=a[p2+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    if((y2-y1)<=2*a[j]*(x2-x1))head++;
                    else break;
                }
                int k=q[head];
                dp[i][j]=dp[i-1][k]+(a[j]-a[k+1])*(a[j]-a[k+1]);
                while(head+1<tail)
                {
                    int p1=q[tail-2];
                    int p2=q[tail-1];
                    int p3=j;
                    int x1=a[p1+1];
                    int x2=a[p2+1];
                    int x3=a[p3+1];
                    int y1=dp[i-1][p1]+x1*x1;
                    int y2=dp[i-1][p2]+x2*x2;
                    int y3=dp[i-1][j]+x3*x3;
                    if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))tail--;
                    else break;
                }
                q[tail++]=j;
            }
        }
        return dp[m][n];
    }
    int main()
    {
       // freopen("in.txt","r",stdin);
       // freopen("out.txt","w",stdout);
        int T;
        scanf("%d",&T);
        int iCase=0;
        while(T--)
        {
            iCase++;
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
               scanf("%d",&a[i]);
            sort(a+1,a+n+1);
            printf("Case %d: %d\n",iCase,DP());
        }
        return 0;
    }

    另外还有四边形不等式优化,还没有非常理解,正在学习中

    /*
    HDU  3840
    C++ 2884ms C++
    
    */
    
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int MAXN=10010;
    const int MAXM=5010;
    
    int a[MAXN];
    
    int s[MAXN][MAXM];
    int dp[MAXN][MAXM];
    int main()
    {
        int n,m;
        int T;
        scanf("%d",&T);
        int iCase=0;
        while(T--)
        {
            iCase++;
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            sort(a+1,a+n+1);
            for(int i=1;i<=n;i++)
            {
                dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
                s[i][1]=1;
            }
    
            for(int k=2;k<=m;k++)
            {
                s[n+1][k]=n-1;
                for(int i=n;i>=k;i--)
                {
                    dp[i][k]=dp[k-1][k-1]+(a[i]-a[k])*(a[i]-a[k]);
                    s[i][k]=k;
                    for(int j=s[i][k-1];j<=s[i+1][k];j++)
                    {
                        int temp=dp[j][k-1]+(a[i]-a[j+1])*(a[i]-a[j+1]);
                        if(temp<dp[i][k])
                        {
                            dp[i][k]=temp;
                            s[i][k]=j;
                        }
                    }
                }
            }
            printf("Case %d: %d\n",iCase,dp[n][m]);
        }
        return 0;
    }
  • 相关阅读:
    一个诡异的COOKIE问题
    PHP与JAVA构造函数的区别
    PHP获取上个月最后一天的一个容易忽略的问题
    jquery屏幕滚动计算事件总结
    Javascript 代理模式模拟一个文件同步功能
    Javascript实现HashTable类
    Javacript实现字典结构
    Javascript正则对象方法与字符串正则方法总结
    一个app,多个入口图标,activity-alias实现多程序入口并显示指定view完成
    javascript「篱式」条件判断
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2657902.html
Copyright © 2011-2022 走看看