zoukankan      html  css  js  c++  java
  • HDU 4336 Card Collector(概率DP,状态压缩)

    Card Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1405    Accepted Submission(s): 624
    Special Judge


    Problem Description
    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.

    As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.
     
    Input
    The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.

    Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.
     
    Output
    Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

    You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.
     
    Sample Input
    1 0.1 2 0.1 0.4
     
    Sample Output
    10.000 10.500
     
    Source
     
    Recommend
    zhoujiaqi2010
     
     
    状态压缩概率DP,或者是容斥原理、
    /*
    HDU 4336
    题意:
    有N(1<=N<=20)张卡片,每包中含有这些卡片的概率为p1,p2,````pN.
    每包至多一张卡片,可能没有卡片。
    求需要买多少包才能拿到所以的N张卡片,求次数的期望。
    
    
    可以用容斥原理做。也可以状态压缩进行概率DP
    期望DP
    */
    #include<stdio.h>
    #include<algorithm>
    #include<iostream>
    #include<string.h>
    using namespace std;
    const int MAXN=22;
    double p[MAXN];
    double dp[1<<MAXN];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            double tt=0;
            for(int i=0;i<n;i++)
            {
                scanf("%lf",&p[i]);
                tt+=p[i];
            }
            tt=1-tt;//tt就表示没有卡片的概率了
            dp[(1<<n)-1]=0;
            for(int i=(1<<n)-2;i>=0;i--)
            {
                double x=0,sum=1;
                for(int j=0;j<n;j++)
                {
                    if((i&(1<<j)))x+=p[j];
                    else sum+=p[j]*dp[i|(1<<j)];
                }
                dp[i]=sum/(1-tt-x);
            }
            printf("%.5lf\n",dp[0]);
    
        }
        return 0;
    }
    /*
    HDU 4336
    容斥原理
    位元素枚举
    */
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    
    double p[22];
    int main()
    {
        int n;
        while(scanf("%d",&n)==1)
        {
            for(int i=0;i<n;i++)scanf("%lf",&p[i]);
            double ans=0;
            for(int i=1;i<(1<<n);i++)
            {
                int cnt=0;
                double sum=0;
                for(int j=0;j<n;j++)
                  if(i&(1<<j))
                  {
                      sum+=p[j];
                      cnt++;
                  }
                if(cnt&1)ans+=1.0/sum;
                else ans-=1.0/sum;
            }
            printf("%.5lf\n",ans);
        }
        return 0;
    }
    人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想
  • 相关阅读:
    DirectX SDK版本与Visual Studio版本
    String详解, String和CharSequence区别, StringBuilder和StringBuffer的区别
    LocalDateTime与字符串互转/Date互转/LocalDate互转/指定日期/时间比较
    MySQL触发器的正确使用与案例分析
    一篇很棒的 MySQL 触发器学习教程
    Java消息队列三道面试题详解!
    到底什么时候该使用MQ?
    mq使用场景、不丢不重、时序性
    Java 8时间和日期API 20例
    eclipse插件之Findbugs、Checkstyle、PMD安装及使用
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2713089.html
Copyright © 2011-2022 走看看