zoukankan      html  css  js  c++  java
  • POJ 3347 Kadj Squares

    Kadj Squares
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 2132   Accepted: 843

    Description

    In this problem, you are given a sequence S1S2, ..., Sn of squares of different sizes. The sides of the squares are integer numbers. We locate the squares on the positive x-y quarter of the plane, such that their sides make 45 degrees with x and y axes, and one of their vertices are on y=0 line. Let bi be the x coordinates of the bottom vertex of Si. First, put S1 such that its left vertex lies on x=0. Then, put S1, (i > 1) at minimum bi such that

    • bi > bi-1 and
    • the interior of Si does not have intersection with the interior of S1...Si-1.

    The goal is to find which squares are visible, either entirely or partially, when viewed from above. In the example above, the squares S1S2, and S4 have this property. More formally, Si is visible from above if it contains a point p, such that no square other than Si intersect the vertical half-line drawn from p upwards.

    Input

    The input consists of multiple test cases. The first line of each test case is n (1 ≤ n ≤ 50), the number of squares. The second line contains n integers between 1 to 30, where the ith number is the length of the sides of Si. The input is terminated by a line containing a zero number.

    Output

    For each test case, output a single line containing the index of the visible squares in the input sequence, in ascending order, separated by blank characters.

    Sample Input

    4
    3 5 1 4
    3
    2 1 2
    0
    

    Sample Output

    1 2 4
    1 3
    

    Source

     
     
     
     
     
    这题是在做计算几何的时候遇到的。
     
    但是发现有简单的做法,不需要用计算几何。
     
    为了避免浮点数运算,把长度乘以sqrt(2).
     
    具体看代码吧,代码看得很清楚了。
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    
    const int MAXN = 55;
    struct Node
    {
        int l,r,len;
    };
    Node node[MAXN];
    int main()
    {
        int n;
        while(scanf("%d",&n) == 1 && n)
        {
            for(int i = 1;i <= n;i++)
            {
                scanf("%d",&node[i].len);
                node[i].l = 0;
                for(int j = 1;j < i;j++)
                    node[i].l = max(node[i].l,node[j].r - abs(node[i].len - node[j].len));
                node[i].r = node[i].l + 2*node[i].len;
            }
            for(int i = 1;i <= n;i++)
            {
                for(int j = 1;j < i;j++)
                    if(node[i].l < node[j].r && node[i].len < node[j].len)
                         node[i].l = node[j].r;
                for(int j = i+1;j <= n;j++)
                    if(node[i].r > node[j].l && node[i].len < node[j].len)
                         node[i].r = node[j].l;
            }
            bool first = true;
            for(int i = 1;i <= n;i++)
                if(node[i].l < node[i].r)
            {
                if(first)first = false;
                else printf(" ");
                printf("%d",i);
            }
            printf("
    ");
        }
        return 0;
    }
     
     
     
  • 相关阅读:
    iOS开发多线程篇—GCD的常见用法
    iOS开发多线程篇—GCD的基本使用
    iOS开发多线程篇—线程的状态
    iOS开发多线程篇—GCD介绍
    iOS开发多线程篇—线程间的通信
    iOS开发多线程篇—线程安全
    iOS开发多线程篇—创建线程
    iOS开发多线程篇—多线程简单介绍
    iOS开发拓展篇-XMPP简单介绍
    iOS开发拓展篇—应用之间的跳转和数据传
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3192475.html
Copyright © 2011-2022 走看看