zoukankan      html  css  js  c++  java
  • HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1997    Accepted Submission(s): 772


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy

    用来试验下模板。

    求欧拉函数就可以了

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    long long eular(long long n)
    {
        long long ans = n;
        for(int i = 2;i*i <= n;i++)
        {
            if(n % i == 0)
            {
                ans -= ans/i;
                while(n % i == 0)
                    n /= i;
            }
        }
        if(n > 1)ans -= ans/n;
        return ans;
    }
    
    int main()
    {
        int n;
        while(scanf("%d",&n) == 1 && n)
        {
            int ret = eular(n);
            printf("%d
    ",n-ret-1);
        }
        return 0;
    }
  • 相关阅读:
    数据库锁表处理汇总
    2021,顺其自然
    NetCore中跨域策略的一个坑
    Furion框架亮点之-动态WebAPI
    sql中where in的数量限制
    动态规划学习笔记
    用Go编写Web应用程序
    Asp.net Core AutoFac根据程序集实现依赖注入
    Linux+Docker+Gitee+Jenkins自动化部署.NET Core服务
    CentOS8.0安装Nacos
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3205712.html
Copyright © 2011-2022 走看看