zoukankan      html  css  js  c++  java
  • ZOJ 3209 Treasure Map (Dancing Links)

    Treasure Map

    Time Limit: 2 Seconds      Memory Limit: 32768 KB

    Your boss once had got many copies of a treasure map. Unfortunately, all the copies are now broken to many rectangular pieces, and what make it worse, he has lost some of the pieces. Luckily, it is possible to figure out the position of each piece in the original map. Now the boss asks you, the talent programmer, to make a complete treasure map with these pieces. You need to make only one complete map and it is not necessary to use all the pieces. But remember, pieces are not allowed to overlap with each other (See sample 2).

    Input

    The first line of the input contains an integer T (T <= 500), indicating the number of cases.

    For each case, the first line contains three integers n m p (1 <= nm <= 30, 1 <= p <= 500), the width and the height of the map, and the number of pieces. Then p lines follow, each consists of four integers x1 y1 x2 y2 (0 <= x1 < x2 <= n, 0 <= y1 < y2 <= m), where (x1, y1) is the coordinate of the lower-left corner of the rectangular piece, and (x2, y2) is the coordinate of the upper-right corner in the original map.

    Cases are separated by one blank line.

    Output

    If you can make a complete map with these pieces, output the least number of pieces you need to achieve this. If it is impossible to make one complete map, just output -1.

    Sample Input

    3
    5 5 1
    0 0 5 5
    
    5 5 2
    0 0 3 5
    2 0 5 5
    
    30 30 5
    0 0 30 10
    0 10 30 20
    0 20 30 30
    0 0 15 30
    15 0 30 30
    

    Sample Output

    1
    -1
    2
    

    Hint

    For sample 1, the only piece is a complete map.

    For sample 2, the two pieces may overlap with each other, so you can not make a complete treasure map.

    For sample 3, you can make a map by either use the first 3 pieces or the last 2 pieces, and the latter approach one needs less pieces.


    Author: HANG, Hang
    Source: The 6th Zhejiang Provincial Collegiate Programming Contest

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3372

    就是简单的精确覆盖问题。

    把每个格子当成一个列,要覆盖所有格子。

    写一下Dancing Links模板就可以了

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2014/5/26 21:50:46
      4 File Name     :E:2014ACM专题学习DLXOJ3209.cpp
      5 ************************************************ */
      6 
      7 #include <stdio.h>
      8 #include <string.h>
      9 #include <iostream>
     10 #include <algorithm>
     11 #include <vector>
     12 #include <queue>
     13 #include <set>
     14 #include <map>
     15 #include <string>
     16 #include <math.h>
     17 #include <stdlib.h>
     18 #include <time.h>
     19 using namespace std;
     20 const int maxnode = 500010;
     21 const int MaxM = 1010;
     22 const int MaxN = 510;
     23 struct DLX
     24 {
     25     int n,m,size;
     26     int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
     27     int H[MaxN],S[MaxM];
     28     int ansd;
     29     void init(int _n,int _m)
     30     {
     31         n = _n;
     32         m = _m;
     33         for(int i = 0;i <= m;i++)
     34         {
     35             S[i] = 0;
     36             U[i] = D[i] = i;
     37             L[i] = i-1;
     38             R[i] = i+1;
     39         }
     40         R[m] = 0; L[0] = m;
     41         size = m;
     42         for(int i = 1;i <= n;i++)
     43             H[i] = -1;
     44     }
     45     void Link(int r,int c)
     46     {
     47         ++S[Col[++size]=c];
     48         Row[size] = r;
     49         D[size] = D[c];
     50         U[D[c]] = size;
     51         U[size] = c;
     52         D[c] = size;
     53         if(H[r] < 0)H[r] = L[size] = R[size] = size;
     54         else
     55         {
     56             R[size] = R[H[r]];
     57             L[R[H[r]]] = size;
     58             L[size] = H[r];
     59             R[H[r]] = size;
     60         }
     61     }
     62     void remove(int c)
     63     {
     64         L[R[c]] = L[c]; R[L[c]] = R[c];
     65         for(int i = D[c];i != c;i = D[i])
     66             for(int j = R[i];j != i;j = R[j])
     67             {
     68                 U[D[j]] = U[j];
     69                 D[U[j]] = D[j];
     70                 --S[Col[j]];
     71             }
     72     }
     73     void resume(int c)
     74     {
     75         for(int i = U[c];i != c;i = U[i])
     76             for(int j = L[i];j != i;j = L[j])
     77                 ++S[Col[U[D[j]]=D[U[j]]=j]];
     78         L[R[c]] = R[L[c]] = c;
     79     }
     80     void Dance(int d)
     81     {
     82         //剪枝下
     83         if(ansd != -1 && ansd <= d)return;
     84         if(R[0] == 0)
     85         {
     86             if(ansd == -1)ansd = d;
     87             else if(d < ansd)ansd = d;
     88             return;
     89         }
     90         int c = R[0];
     91         for(int i = R[0];i != 0;i = R[i])
     92             if(S[i] < S[c])
     93                 c = i;
     94         remove(c);
     95         for(int i = D[c];i != c;i = D[i])
     96         {
     97             for(int j = R[i];j != i;j = R[j])remove(Col[j]);
     98             Dance(d+1);
     99             for(int j = L[i];j != i;j = L[j])resume(Col[j]);
    100         }
    101         resume(c);
    102     }
    103 };
    104 DLX g;
    105 
    106 int main()
    107 {
    108     //freopen("in.txt","r",stdin);
    109     //freopen("out.txt","w",stdout);
    110     int T;
    111     int n,m,p;
    112     scanf("%d",&T);
    113     while(T--)
    114     {
    115         scanf("%d%d%d",&n,&m,&p);
    116         g.init(p,n*m);
    117         int x1,y1,x2,y2;
    118         for(int k = 1;k <= p;k++)
    119         {
    120             scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
    121             for(int i = x1+1;i <= x2;i++)
    122                 for(int j = y1+1;j <= y2;j++)
    123                     g.Link(k,j + (i-1)*m);
    124         }
    125         g.ansd = -1;
    126         g.Dance(0);
    127         printf("%d
    ",g.ansd);
    128     }
    129     return 0;
    130 }
  • 相关阅读:
    以用户、组织结构和权限为例,论如何将基于关系型数据库的设计简化
    spring InitializingBean接口
    DelegatingFilterProxy
    组织机构权限系统的实现(工作流)
    activiti 引擎 数据库设计说明书
    modeler与activiti进行整合
    流程引擎的API和服务基础
    广东程序员在加利福尼亚
    开源 -- 机器学习相关报道
    国内一些大公司的开源项目
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3754020.html
Copyright © 2011-2022 走看看