Prime Ring Problem
Prime Ring Problem |
A ring is composed of n (even number) circles as shown in diagram. Put natural numbers into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n <= 16)
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements.
You are to write a program that completes above process.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include <bits/stdc++.h> #define MAXN 102400 using namespace std; int n; bool isp[MAXN]; int res[32]; int vis[32]; void init_isp() { isp[0] = isp[1] = false; for(int i = 2; i < MAXN; i++) isp[i] = true; for(int i = 2; i < sqrt(MAXN)+1; i++) if(isp[i]) for(int j = 2; i*j < MAXN; j++) isp[i*j] = false; } void dfs(int cur) { if(cur == n && isp[res[0]+res[n-1]]){ printf("%d", res[0]); for(int i = 1; i < n; i++) printf(" %d", res[i]); printf(" "); } else{ for(int i = 2; i <= n; i++){ if(!vis[i] && isp[res[cur-1]+i]){ res[cur] = i; vis[i] = 1; dfs(cur+1); vis[i] = 0; } } } } int main() { int kase = 0; init_isp(); while(cin >> n) { if(kase++) printf(" "); printf("Case %d: ",kase); res[0] = 1; memset(vis, 0, sizeof(vis)); vis[1] = 1; dfs(1); } return 0; }