zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 7.36

    代码:

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 7.36 
    
    ');
    
    banner();
    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    % arbitury shape pass
    w1 = 0;       w2 = 0.20*pi; delta1 = 0.05; gain1 = 0.00;
    w3 = 0.25*pi; w4 = 0.45*pi; delta2 = 0.10; gain2 = 2.00;
    w5 = 0.50*pi; w6 = 0.70*pi; delta3 = 0.05; gain3 = 0.00;
    w7 = 0.75*pi; w8 = pi;      delta4 = 0.15; gain4 = 4.15;
    
    fprintf('
     --- Filter Specifications START ---
    ');
    Rp1 = -20*log10((gain2-delta2)/(gain2+delta2))
    As1 = -20*log10(delta1/(gain2+delta2)) 
    
    Rp2 = -20*log10((gain4-delta4)/(gain4+delta4))
    As2 = -20*log10(delta3/(gain4+delta4)) 
    fprintf('
     --- Filter Specifications E N D ---
    ');
    
    As = min(As1, As2);
    
    fprintf('
     --- Fix Window Method ---
    ');
    tr_width = min((w3-w2), (w5-w4));
    
    %% ---------------------------------------------------
    %%         1  Rectangular Window
    %% ---------------------------------------------------
    M = ceil(1.8*pi/tr_width) + 1;                 % Rectangular Window   M=37
    M=M+190;
    fprintf('
    
    #1.Rectangular Window, Filter Length M=%d.
    ', M);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M)); 
    w_rect = (boxcar(M))';  h = hd .* w_rect;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    w1i = floor(w1/delta_w)+1; w2i = floor(w2/delta_w)+1;
    w3i = floor(w3/delta_w)+1; w4i = floor(w4/delta_w)+1;
    w5i = floor(w5/delta_w)+1; w6i = floor(w6/delta_w)+1;
    w7i = floor(w7/delta_w)+1; w8i = floor(w8/delta_w)+1;
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));        % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    
    %%  ----------------------------
    %%             Plot
    %% -----------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.1 ideal_lp Rect Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    subplot(2,2,2); stem(n, w_rect); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Rectangular Window, M=227');
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-33,-28,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'33';'28';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.1 h(n) ideal_lp Rect Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-33,-28,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'33';'28';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.1 h(n) by Rect Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    
    %% ---------------------------------------------------
    %%             2  Bartlett Window
    %% ---------------------------------------------------
    M = ceil(6.1*pi/tr_width) + 1;                 % Bartlett Window M=123
    M=M+90;
    fprintf('
    
    #2.Bartlett Window, Filter Length M=%d.
    ', M);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M));  
    w_bart = (bartlett(M))';  h = hd .* w_bart;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));          % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    
    %% --------------------------
    %%            Plot
    %% --------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.2 ideal_lp Bartlett Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_bart); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Bartlett Window, M=213');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-31,-25,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'31';'25';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.2 h(n) ideal_lp Bartlett Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-31,-25,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'31';'25';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.2 h(n) by Bartlett Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    
    %% ---------------------------------------------------
    %%              3  Hann Window
    %% ---------------------------------------------------
    M = ceil(6.2*pi/tr_width) + 1;                 % Hann Window
    
    fprintf('
    
    #3.Hann Window, Filter Length M=%4d.
    ', M);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M));  
    w_hann = (hann(M))';  h = hd .* w_hann;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));          % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    %% --------------------------
    %%            Plot
    %% --------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.3 ideal_lp Hann Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_hann); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Hann Window, M=125');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-49,-41,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'49';'41';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.3 h(n) ideal_lp Hann Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-49,-41,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'49';'41';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.3 h(n) by Hann Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    
    
    
    %% ---------------------------------------------------
    %%             4  Hamming Window
    %% ---------------------------------------------------
    M = ceil(6.6*pi/tr_width) + 1;                 % Hamming Window
    fprintf('
    
    #4.Hamming Window, Filter Length M=%4d.
    ', M);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M));  
    w_hamm = (hamming(M))';  h = hd .* w_hamm;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));          % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    
    %% --------------------------
    %%            Plot
    %% --------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.4 ideal_lp Hamming Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_hamm); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Hamming Window, M=133');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0 2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -100 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-59,-49,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'59';'49';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.4 h(n) ideal_lp Hamming Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-59,-49,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'59';'49';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.4 h(n) by Hamming Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    
    
    %% ---------------------------------------------------
    %%             5  Blackman Window
    %% ---------------------------------------------------
    M = ceil(11*pi/tr_width) + 1;                 % Blackman Window
    fprintf('
    
    #5.Blackman Window, Filter Length M=%d.
    ', M);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M)); 
    w_bla = (blackman(M))';  h = hd .* w_bla;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));          % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    
    
    %% --------------------------
    %%            Plot
    %% --------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.5 ideal_lp Blackman Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_bla); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Blackman Window, M=221');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-80,-68,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'80';'68';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.5 h(n) ideal_lp Blackman Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-80,-68,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'80';'68';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -120 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.16.5 h(n) by Blackman Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    
    
    %% ---------------------------------------------------
    %%             6  Kaiser Window
    %% ---------------------------------------------------
    As = 40;
    M = ceil((As-7.95)/(2.285*tr_width)) + 1;                 % Kaiser Window    26--even
    
    if As > 21 || As < 50 
    	beta = 0.5842*(As-21)^0.4 + 0.07886*(As-21);
    else
    	beta = 0.1102*(As-8.7);
    end
    fprintf('
    
    #6.Kaiser Window, Filter Length M=%d, beta=%.4f
    ', M,beta);
    
    n = [0:1:M-1]; wc1 = (w2+w3)/2; wc2 = (w4+w5)/2; wc3 = (w6+w7)/2;
    
    %wc = (ws + wp)/2,                    % ideal LPF cutoff frequency
    
    hd = 2*(ideal_lp(wc2, M) - ideal_lp(wc1, M)) + 4.15*(ideal_lp(pi, M) - ideal_lp(wc3, M));  
    w_kai = (kaiser(M,beta))';  h = hd .* w_kai;
    [db, mag, pha, grd, w] = freqz_m(h, [1]);  delta_w = 2*pi/1000;
    [Hr,ww,P,L] = ampl_res(h);
    
    Rp1 = -(min(db(w3i :1: w4i)));     % Actual Passband Ripple
    Rp2 = -(min(db(w7i :1: w8i)));     % Actual Passband Ripple
    fprintf('
    Actual Passband Ripple is %.4f and %.4f dB.
    ', Rp1, Rp2);
    
    As1 = -round(max(db(1 : 1 : w2i)));          % Min Stopband attenuation
    As2 = -round(max(db(w5i : 1 : w6i)));        % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f and %.4f dB.
    ', As1, As2);
    
    [delta1_rect1, delta2_rect1] = db2delta(Rp1, As1)
    [delta1_rect2, delta2_rect2] = db2delta(Rp2, As2)
    
    
    %% --------------------------
    %%            Plot
    %% --------------------------
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.6 ideal_lp Kaiser Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); stem(n, hd); axis([0 M-1 -1.0 2.0]); grid on;
    xlabel('n'); ylabel('hd(n)'); title('Ideal Impulse Response');
    
    subplot(2,2,2); stem(n, w_kai); axis([0 M-1 0 1.1]); grid on;
    xlabel('n'); ylabel('w(n)'); title('Kaiser Window, M=119');
    
    subplot(2,2,3); stem(n, h); axis([0 M-1 -1.0  2.0]); grid on;
    xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response');
    
    subplot(2,2,4); plot(w/pi, db); axis([0 1 -120 10]); grid on;
    set(gca,'YTickMode','manual','YTick',[-90,-55,-47,0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'55';'47';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.36.6 h(n) ideal_lp Kaiser Method')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -120 10]); 
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    set(gca,'YTickMode','manual','YTick',[-90,-55,-47,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'55';'47';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 2 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1,1.3,1.5,1.8,2]);
    set(gca,'YTickMode','manual','YTick',[0.0,2.0,4.15])
    
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 7.16.6 h(n) by Kaiser Method')
    set(gcf,'Color','white'); 
    
    plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Hr'); title('Amplitude Response');
    set(gca,'YTickMode','manual','YTick',[-delta1, 0, delta1, 2-delta2, 2+ delta2, 4.15- delta4, 4.15+delta4])
    set(gca,'XTickMode','manual','XTick',[0,0.2,0.25,0.45,0.5,0.7,0.75,1]);
    

      运行结果:

            窗函数法,使用了矩形窗、三角窗、Hann窗、Hamming窗、Blackman窗、Kaiser窗,

            1、Rectangular窗

            2、Bartlett三角窗

            3、Hann、Hamming窗、Blackman窗的图这里不放了,直接放Kaiser窗的结果

            4、频率采样方法

            5、PM法

            6、小结

            以上用了窗函数法、频率采样法、Parks-McClellan法,下面对其得到的滤波器长度作对比,

    序号 设 计 方 法

    滤波器长度

         M

    阻带衰减

    As(dB)

    1

    Rectangular矩形窗

    227 28
    2 Bartlett三角窗 213 27
    3 Hann窗 125 41
    4 Hamming窗 133 49
    5 Blackman窗 221 68
    6 Kaiser窗 91 39
    7 频率采样法 81 47
    8 Parks-McClellan法 67 30

            结合滤波器指标要求和实际情况,Kaiser窗、频率采样法和P-M法可以采用。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    使用Astah画UML类图经验总结
    Qt的四个常见的图像叠加模式
    获取Linux时间函数
    DBus学习网站
    线程属性pthread_attr_t简介
    Secure CRT 自动记录日志log配置
    MySQL的group_concat()函数合并多行数据
    MySQL的Limit详解
    异步查询json传日期格式到前台,变成了时间戳的格式
    启动studio报错Gradle error
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/10900912.html
Copyright © 2011-2022 走看看