代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf(' *********************************************************** '); fprintf(' <DSP using MATLAB> Problem 8.2 '); banner(); %% ------------------------------------------------------------------------ % digital resonator r = 0.8 %r = 0.9 %r = 0.99 omega0 = pi/4; % corresponding system function Direct form % zeros at z=±1 G = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)) / sqrt(2*(1-cos(2*omega0))) % gain parameter b = G*[1 0 -1]; % denominator a = [1 -2*r*cos(omega0) r*r]; % numerator % precise resonant frequency and 3dB bandwidth omega_r = acos((1+r*r)*cos(omega0)/(2*r)); delta_omega = 2*(1-r); fprintf(' Resonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f ', omega_r/pi,delta_omega); % [db, mag, pha, grd, w] = freqz_m(b, a); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]); xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot, r=%.2f %.2f\pi',r,omega0/pi)); %pzplotz(b,a); % Impulse Response fprintf(' ----------------------------------'); fprintf(' Partial fraction expansion method: '); [R, p, c] = residuez(b,a) MR = (abs(R))' % Residue Magnitude AR = (angle(R))'/pi % Residue angles in pi units Mp = (abs(p))' % pole Magnitude Ap = (angle(p))'/pi % pole angles in pi units [delta, n] = impseq(0,0,50); h_chk = filter(b,a,delta); % check sequences h = ( 0.8.^n ) .* (2*0.232*cos(pi*n/4) - 2*0.0509*sin(pi*n/4)) -0.283 * delta; % r=0.8 %h = ( 0.9.^n ) .* (2*0.1063*cos(pi*n/4) - 2*0.0112*sin(pi*n/4)) -0.1174 * delta; % r=0.9 %h = ( 0.99.^n ) .* (2*0.0101*cos(pi*n/4) - 2*0.0001*sin(pi*n/4)) -0.0102 * delta; % r=0.99 figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by filter and Inv-Z ') set(gcf,'Color','white'); subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter'); subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z'); [db, mag, pha, grd, w] = freqz_m(h, [1]); figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by Inv-Z ') set(gcf,'Color','white'); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); set(gca,'YTickMode','manual','YTick',[-60,-30,0]) set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']); set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]); xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians'); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay'); set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]); %set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
这里的G为增益系数,使得幅度谱在共振频率处最大,等于1
系统函数部分分式展开
系统函数的零极点图
h_chk是由将脉冲序列当成系统输入而得到的,h是由系统函数部分分时展开后查表求逆z变换得到的,
二者幅度谱一致,但是相位谱和群延迟稍有不同。
r=0.9和0.99的结果这里就不放了。