zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 8.2

        代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.2 
    
    ');
    banner();
    %% ------------------------------------------------------------------------
    
    % digital resonator
    r = 0.8
    %r = 0.9
    %r = 0.99
    omega0 = pi/4;
    
    % corresponding system function  Direct form
    %     zeros at z=±1
    G = (1-r)*sqrt(1+r*r-2*r*cos(2*omega0)) / sqrt(2*(1-cos(2*omega0)))     % gain parameter
    b = G*[1  0  -1];                                                        % denominator                      
    a = [1 -2*r*cos(omega0) r*r];                                            % numerator
    
    % precise resonant frequency and 3dB bandwidth
    omega_r = acos((1+r*r)*cos(omega0)/(2*r));
    delta_omega = 2*(1-r);
    fprintf('
    Resonant Freq is : %.4fpi unit, 3dB bandwidth is %.4f 
    ', omega_r/pi,delta_omega);
    % 
    
    [db, mag, pha, grd, w] = freqz_m(b, a);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); 
    set(gca,'YTickMode','manual','YTick',[-60,-30,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    %set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot, r=%.2f  %.2f\pi',r,omega0/pi));
    %pzplotz(b,a);
    
    
    % Impulse Response
    fprintf('
    ----------------------------------');
    fprintf('
    Partial fraction expansion method: 
    ');
    [R, p, c] = residuez(b,a)
    MR = (abs(R))'              % Residue  Magnitude
    AR = (angle(R))'/pi         % Residue  angles in pi units
    Mp = (abs(p))'              % pole  Magnitude
    Ap = (angle(p))'/pi         % pole  angles in pi units
    [delta, n] = impseq(0,0,50);
    h_chk = filter(b,a,delta);      % check sequences
    
    h =  ( 0.8.^n ) .* (2*0.232*cos(pi*n/4) - 2*0.0509*sin(pi*n/4)) -0.283 * delta;  % r=0.8
    %h =  ( 0.9.^n ) .* (2*0.1063*cos(pi*n/4) - 2*0.0112*sin(pi*n/4)) -0.1174 * delta;  % r=0.9
    %h =  ( 0.99.^n ) .* (2*0.0101*cos(pi*n/4) - 2*0.0001*sin(pi*n/4)) -0.0102 * delta;  % r=0.99
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by filter and Inv-Z ')
    set(gcf,'Color','white'); 
    
    subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); 
    xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter');
    
    subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); 
    xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z');
    
    
    [db, mag, pha, grd, w] = freqz_m(h, [1]);
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.2 Digital Resonator, h(n) by Inv-Z ')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); 
    set(gca,'YTickMode','manual','YTick',[-60,-30,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    %set(gca,'YTickMode','manual','YTick',[0,1.0]);
    

      运行结果:

           这里的G为增益系数,使得幅度谱在共振频率处最大,等于1

            系统函数部分分式展开

            系统函数的零极点图

            h_chk是由将脉冲序列当成系统输入而得到的,h是由系统函数部分分时展开后查表求逆z变换得到的,

    二者幅度谱一致,但是相位谱和群延迟稍有不同。

            r=0.9和0.99的结果这里就不放了。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    MySQL 数据库改名的简单方法
    Apache启用Gzip压缩
    安全的Web主机iptables防火墙脚本
    iptables
    Linux服务器维护统计连接数查看外部IP
    面试相关(新)
    hdu 4946 Area of Mushroom (凸包,去重点,水平排序,留共线点)
    凸包全解
    eclipse (android环境搭建)
    wins 软件安装
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/10940073.html
Copyright © 2011-2022 走看看