zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 8.32

    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.32 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    % -------------------------------------
    %           Ω=(2/T)tan(ω/2)  
    %           ω=2*[atan(ΩT/2)]
    %     Digital Filter Specifications:
    % -------------------------------------
    wp = 0.3*pi;                     % digital passband freq in rad     
    ws = 0.4*pi;                     % digital stopband freq in rad     
    Rp = 0.25;                       % passband ripple in dB
    As = 50;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1;                           % set T = 1
    Fs = 1/T;
    OmegaP = (2/T)*tan(wp/2)        % prototype passband freq      
    OmegaS = (2/T)*tan(ws/2)        % prototype stopband freq      
    
    % Analog Elliptic Prototype Filter Calculation:
    [cs, ds] = afd_elip(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds)
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 0.5*pi/T);
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    
    % Impulse Invariance Transformation:
    %[b, a] = imp_invr(cs, ds, T); 
    
    % Bilinear Transformation
    [b, a] = bilinear(cs, ds, Fs)
    [C, B, A] = dir2cas(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.32 Analog Elliptic lowpass')
    set(gcf,'Color','white'); 
    M = 1.0;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/pi, mag_s);  grid on; %axis([-10, 10, 0, 1.2]);
    xlabel(' Analog frequency in pi units'); ylabel('|H|'); title('Magnitude in Absolute');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.4625, -0.3244, 0, 0.3244, 0.4625]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.9716, 1.0, 1.5]);
    
    subplot(2,2,2); plot(ww_s/pi, db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.4625, -0.3244, 0, 0.3244, 0.417, 0.458, 0.4625]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-50, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['50';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/pi, pha_s/pi);  grid on; %axis([-10, 10, -1.2, 1.2]);
    xlabel('Analog frequency in pi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.4625, -0.3244, 0, 0.3244, 0.4625]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.32 Digital Elliptic lowpass by bilinear')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel(' Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, 1.6, 1.7, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.9716, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, 1.6, 1.7, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -80, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.37, 0.4, 1.6, 1.7, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-60, -50, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'50';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.3, 0.4, 1.6, 1.7, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.32 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.32 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.01:90]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0,90,-0.2,0.3]);hold on
    
    n = [0:1:90/T]; hn = filter(b,a,impseq(0,0,90/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses T=%2d',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                  % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags/T,'b', wwz/(2*pi*T), magz, 'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.8,0.15,'Analog filter', 'Color', 'b'); text(0.8,0.4,'Digital filter', 'Color', 'r');
    

      运行结果:

          这里主要放双线性变化法的代码。

            通带、阻带绝对指标,模拟滤波器截止频率指标,

            模拟Elliptic原型低通滤波器,系统函数串联形式的系数

            采用双线性变换法,得到数字Elliptic低通滤波器,系统函数直接形式的系数,转换成串联形式的系数

            模拟Elliptic原型低通滤波器,其幅度谱、相位谱和脉冲响应

            采用双线性变换法(bilinear)得到数字Elliptic低通滤波器,其幅度谱、相位谱和群延迟响应

            数字Elliptic低通系统函数零极点图

            模拟原型和数字低通的脉冲响应对比,可见双线性变换法不保留脉冲响应的形态。

            使用MATLAB自带ellip函数的运算结果这里就不写了,只放张幅度谱、相位谱和群延迟响应的图,可见和双线性变换法得到的结果相比,区别不大。

  • 相关阅读:
    父母的房产继承买卖赠予以及网络红包代金券优惠券的国家最新税法规定
    家里这7个地方要装柜子,少装一个都是灾难!
    centos里的压缩解压命令tar总结
    2019年9月2日开学!寒假时间也定了……
    理赔时很容易出差错的3个“隐蔽”点
    Linux命令:用“dirs”、“pushd”、“popd”来操作目录栈
    python金融反欺诈-项目实战
    模型分数分布
    PSi-Population Stability Index (PSI)模型分稳定性评估指标
    Kolmogorov–Smirnov test(KS)
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11623665.html
Copyright © 2011-2022 走看看